
Varnish Tips & Tricks, 2015 edition

ConFoo 2015
Montreal, Canada

Magnus Hagander
magnus@hagander.net

PRODUCTS • CONSULTING • APPLICATION MANAGEMENT • IT OPERATIONS • SUPPORT • TRAINING

Magnus Hagander
•Redpill Linpro

•Infrastructure services
•PostgreSQL / Databases

•Varnish
•Medium/large scale deployments
•Reviews
•24/7 support services

Varnish
•High performance web cache

•(yes, really)
•Most websites are slow
•Most websites are (partially) cacheable

•If your solution is flexible enough

Varnish
•Cache static assets

•You're slow at this
•Cache semi-dynamic assets

•You're even slower at this
•Cache API calls

•Thank you REST!

Varnish
•BSD License Open Source

•Lead architect is a FreeBSD hacker...
•Proprietary enterprise version

•Varnish Software AS
•Adds some extra features
•Comes with SLA support

Pick your version
•Varnish 4.0

•"current stable"
•Released April 2014

•Varnish 3.0
•"old stable"
•Released June 2011

•Don't use anything older!

Examples
•I'll use Varnish 3.0

•typo warnings!

Varnish 4.0
•Fairly large re-architecture
•Native streaming
•Background (re)-fetch

•De-couple frontend from backend
•Grace on first miss

•Much better log interface

Installation source
•repo.varnish-cache.org

•RHEL 5-7
•Debian (squeeze, wheezy, jessie)
•Ubuntu (lucid, precise, trusty)

•Beware of distro built-in
•(versions)

How much memory?
•More!

•Always more :)
•Website hotspot

•Often surprisingly small
•Iterative process

•Working memory

Storage type
•Fits in RAM: malloc
•Does not fit in RAM: file

•Or buy more RAM!
•Never: persistent

Configuring varnish
•VCL

•Configuration is code
•Replace without restart

•No cache-loss
•No connection-loss

VCL
•"Unlimited" flexibility
•vmod's
•Inline-C

•last resort

VCL
•Can make all decisions in VCL

•Cache: yes/no
•Cache-time
•etc

•Can override everything from backend
•"Yes, I will cache this"
•Deal with uncooperative backends

VCL best practices
•Avoid overrides
•Let backend dictate rules

•If possible!
•Easier maintenance
•Knowledge in the right place

Cache time from backend
•Include explicit cache info
HTTP/1.0 200 OK
Cache-Control: maxage=60
Content-Type: text/html; charset=utf-8

Cache time from backend
•Separate client and server cache time

•Since we can forcibly expire from server
HTTP/1.0 200 OK
Cache-Control: s-maxage=600, maxage=30
Content-Type: text/html; charset=utf-8

Cache prevention from
backend

•Have backend tag uncacheable pages
•So we can cache by default

•Watch out for default CMS values!
HTTP/1.0 200 OK
Cache-Control: no-cache
Content-Type: text/html; charset=utf-8

Beware of Vary
•Instructs browser/cache to store separate copies
•"Acceptable" use:

•Accept-Encoding, Accept-Language
•"Bad" use:

•User-Agent, Cookie, *
HTTP/1.0 200 OK
Vary: User-Agent
Content-Type: text/html; charset=utf-8

Override in VCL
•Always better to set in backend
•Sometimes not possible

•CMS
•Frameworks
•etc..

•Only then, override in vcl

Overrides in vcl
sub vcl_fetch {
 unset beresp.http.vary;
 unset beresp.http.cache-control;
 set beresp.ttl = 1h;
}

VCL best practices
•Let default code run

•In most cases
•Only explicitly return when necessary

•Modify incoming request/response instead

Overrides in vcl
sub vcl_fetch {
 if (beresp.http.cache-control ~ "no-cache") {
 unset beresp.http.cache-control;
 set beresp.ttl = 1h;
 }
 if (req.url ~ "^/static/") {
 unset beresp.http.cache-control;
 set beresp.ttl = 4h;
 }
}

Cookies
•Cookies...

Cookies
•The cache-killer
•http protocol makes it harder
•Varnish can help clean up

Cookies vs http
•Cookies included on all requests

•once set
•Even for static assets

•Never cookie-dependent!

Cookies vs http
sub vcl_recv {
 if (req.url ~ "^/static/") {
 unset req.http.cookie;
 }
}

Cookies vs http
•Cookies still included over wire

•Just not varnish -> backend
•Consider separate subdomain

•Also increases browser parallelism
•Can point to same Varnish instance

•Instead, normalize hostname!

Normalize hostname
•Transparent to browser

•Not a redirect!
sub vcl_recv {
 if (req.http.host ~ "\.example\.com$") {
 set req.http.host = "example.com";
 }

Back to cookies
•Client-side cookies

•Use local storage instead!
•Google Analytics

•(or similar)
•Never used on backend
•Prevents caching by default

Client side cookies
•Edit away known ones
•See what's left...
sub vcl_recv {
 set req.http.Cookie = regsuball(req.http.Cookie, "(^|;\s*)(_[_a-z]+|has_js)=[^;]*", "");
 set req.http.Cookie = regsub(req.http.Cookie, "^;\s*", "");
 if (req.http.Cookie == "") {
 unset req.http.Cookie;
 }
}

Cookies from backend
•Any Set-Cookie will disable caching

•Don't send them on all requests
•Use cache-control to avoid caching!

•Set-cookie generate hit-for-pass

Cookies from backend
sub vcl_fetch {
 if (req.url ~ "^/static/") {
 unset beresp.http.set-cookie;
 }
}

Session cookies
•Don't generate session until you need it

•Many CMSs generate on first visit
•Actively delete when user logs out!

•Back to cached data!
•Disable caching or cache per user

Cache per user
•Keep one copy / user
•Significantly lower cache ratio
•Cache bloat!
•Limit to expensive pages!
•Set shorter cache-time!

Cache per user
sub vcl_recv {
 if (req.url ~ "^/expensive/" && req.http.cookie ~ "session=\d+") {
 set req.http.sessionid = regsub(req.http.cookie, "session=(\d+)", "\1");
 }
}
sub vcl_hash {
 if (req.http.sessionid) {
 hash_data(req.http.sessionid);
 }
}

Grace mode

Grace mode
•You should be using grace mode...

Grace mode
•Serve expired content
•Even when backend is down

•Or just very slow
•Survive load spikes
•Hide downtime

Grace mode
•Each objects gets two timeouts

•One how long to serve (beresp.ttl)
•One how long to keep in cache (beresp.grace)

Grace mode - backend slow
•New request arrives
•Existing request to backend already in progress
•Intentionally serve stale content

•Instead of waiting

Grace mode - backend down
•Request arrives when backend is down
•No point in asking for object from backend
•Intentionally serve stale content

•Instead of "503 internal error"

Grace mode
•Requires backend health probes

•Which you probably want anyway
•Poll backend at regular intervals
•Checks http status code
•Also used for load balancer

Grace mode
sub vcl_recv {
 if (req.backend.healthy) {
 set req.grace = 1m;
 } else {
 set req.grace = 24h;
 }
}
sub vcl_fetch {
 ...
 set beresp.grace = 12h;
}

API caching
•REST API's trivial to cache

•Follows http standard
•Don't use cookies

•Website JS apis included
•Remember http cookie behavior

•Add required headers to hash

API caching
•SOAP

•Don't even try...

API routing
•Varnish is an efficient http router
•Even without caching
•Often used as API router
•Match on any http header

•Including sticky load balancing etc

Intelligent cache expiry
•Expired/remove on demand
•More can be cached
•Cache times can be longer

Simple cache expiry
•URL is known
•Send PURGE or similar request
•Simple and efficient

Intelligent cache expiry
•Expire based on any regexp
•Against any header element

•E.g. URL
•Or content type
•Or custom header

Intelligent cache expiry
•Custom headers:
HTTP/1.1 200 OK
Cache-Control: s-maxage=14400
Content-Type: text/html; charset=utf-8
Date: Fri, 20 Feb 2015 16:14:54 GMT
Last-Modified: Wed, 18 Feb 2015 11:13:16 GMT
X-pgthread: :308480:

Intelligent cache expiry
sub vcl_deliver {
 remove resp.http.x-pgthread;
}

sub vcl_recv {
 if (req.url ~ "/varnish-purge" && client.ip ~ purge) {
 if (req.http.x-purge-thread) {
 ban("obj.http.x-pgthread ~ " + req.http.x-purge-thread)
 }
 }
}

Summary

Summary
•VCL is infinitely flexible
•Hopefully you won't need it!

•KISS definitely applies!

Summary
•Varnish is Swiss army knife of http
•Not just caching!

Thank you!
Magnus Hagander

magnus@hagander.net
@magnushagander

http://www.hagander.net/talks/

This material is licensed CC BY-NC 4.0.

http://www.hagander.net/talks/

	Magnus Hagander
	Varnish
	Varnish
	Varnish
	Pick your version
	Examples
	Varnish 4.0
	Installation source
	How much memory?
	Storage type
	Configuring varnish
	VCL
	VCL
	VCL best practices
	Cache time from backend
	Cache time from backend
	Cache prevention from backend
	Beware of Vary
	Override in VCL
	Overrides in vcl
	VCL best practices
	Overrides in vcl
	Cookies
	Cookies
	Cookies vs http
	Cookies vs http
	Cookies vs http
	Normalize hostname
	Back to cookies
	Client side cookies
	Cookies from backend
	Cookies from backend
	Session cookies
	Cache per user
	Cache per user
	Grace mode
	Grace mode
	Grace mode
	Grace mode
	Grace mode - backend slow
	Grace mode - backend down
	Grace mode
	Grace mode
	API caching
	API caching
	API routing
	Intelligent cache expiry
	Simple cache expiry
	Intelligent cache expiry
	Intelligent cache expiry
	Intelligent cache expiry
	Summary
	Summary
	Summary

