
Secure PostgreSQL Deployment

PGDay'14 Russia
St Petersburg, Russia

Magnus Hagander
magnus@hagander.net

PRODUCTS • CONSULTING • APPLICATION MANAGEMENT • IT OPERATIONS • SUPPORT • TRAINING

Magnus Hagander
•PostgreSQL

•Core Team member
•Committer
•PostgreSQL Europe

•Redpill Linpro
•Infrastructure services
•Principal database consultant

Security

Security
•It's hard

Security
•It's hard

•No, really!

Security
•There is no one solution

Security
•There is no one requirement

Security
•PostgreSQL provides a toolbox
•You don't need everything
•Maybe you don't need anything...

Secure PostgreSQL
Deployment

•Environment
•Communication
•Authentication

Secure PostgreSQL
Applications

•Authorization/Permissions
•Roles
•Security barrier views
•Security definer functions
•RLS
•etc...

Secure PostgreSQL
Environment

•Only as secure as the environment
•If someone owns the OS, they own the db

•Owns the server -> owns the OS
•Owns the datacenter -> owns the server

•Defined trust levels!
•e.g. outsourcing/cloud vendors

Operating system
•Pick your operating system

•Something you know
•Regardless of PostgreSQL

•Secure "reasonably"
•No other local users!

Operating system
•Use standard installers

•Don't roll your own
•Usually adapted for OS
•Consistent security!

Operating system
•Keep updated
•Both operating system and PostgreSQL
•yum/apt makes it easier

•But you have to use it!
•Monitor!

Operating system
•Encrypted disks?

•Performance/reliability implications
•Key management?

•What happens on restart?

Multi instance
•Different security domains?
•Different OS user

•Sometimes not well packaged
•Virtualization/containers?

Securing communications

Securing communications
•Do you need it?

•Attack vectors?
•Overhead!

Securing communications
•(physical)
•VPN
•ipsec
•SSL

SSL in PostgreSQL
•OpenSSL only (sorry)
•Certificate/key

•Like any other service
•Disabled by default on server

•Enabled on client!!

Certificates
•Server certificate mandatory
•Does not need public ca

•Probably should not use public ca
•"Snakeoil" works

•But no MITM protection!
•Use custom (dedicated?) CA!

Server-side SSL
•Set ssl=on
•server.key/server.crt in data directory

•Check permissions!
•Restart, done.

SSL negotiation
•SSL negotiated between client and server
•Server provides
•Client decides
•Controlled by sslmode parameter

SSL negotiation
•sslmode default is prefer

•This is stupid....
•No guarantees

SSL negotiation

SSL enforcement
•Client decides??!!?!?!

•Huh??
•Client decides, but server can reject
•Using hostssl in pg_hba.conf

SSL enforcement
..
hostssl xxx yyy ...
..

•Always use!

Client certificates
•Not required by default
•Can be requested by server

•clientcert=1 in pg_hba.conf
..
hostssl xxx yyy zzz abc clientcert=1
..

Client certificates
•Provide in PEM format file

•Or through OpenSSL compatible engine
•Validated against root CA on server

•PostgreSQL specific root
•By default just needs to exist

Authentication

Authentication
•Make sure it's the correct user
•And that they can prove it

A step back
•Authorization and roles
•I know I said I wouldn't...

Superuser
•Never use superuser
•Disables all security

•Allows arbitrary code execution!
•Allows replacement of configuration!

Authentication
•PostgreSQL supports many methods

•Host Based Authentication
•Combined in the same installation!
•Don't just "dumb down"

pg_hba.conf
•Top-bottom file
•Filter by:

•Connection type
•User
•Database
•Connection source

•"Firewall" and authentication choice

pg_hba.conf
•Order by most specific
local all all peer
host all all 127.0.0.1/32 md5
hostnossl webdb webuser 10.1.1.0/30 md5
hostssl all +admin 192.168.0.0/24 gss

•Implicit reject at end

Authentication methods
•Many choices

•Internal
•OS integrated
•Fully external

•And some really bad ones...

trust
•Trust everybody everywhere

•Why would anybody claim they're someone else?
•"Turn off all security"
•Any use case? Maybe one...

trust
•Use it? Change it!

peer
•Only over Unix sockets

•Sorry Windows, sorry Java
•Local connections only
•Asks OS kernel

•Trustworthy!

md5
•Simplest one?
•Username/password
•Double MD5-hash
•Do not use "password"

ldap
•Looks like password to client

•Regular prompt
•Passed over to LDAP server
•No special support needed

•Construct URLs different ways
•Prefix+suffix
•Search+bind

ldap
•Cleartext!

•Use with ldaptls=1
•Use with hostssl

•Password policies from LDAP server
•Only authentication!

gss/sspi
•Kerberos based

•Including Active Directory
•Single Sign-On

•No password prompt!
•All Kerberos supported auth methods

•Secure tickets
•"krb5" deprecated/removed

radius
•Looks like password to client

•Use with hostssl!
•Shared-secret encryption to Radius server
•Common for OTP solutions

cert
•Map client certificate to login

•Uses CN attribute
•Any certificate "engine" supported by OpenSSL

•Normally uses PEM encoded files

User name mapping
•External systems with different usernames

•Peer
•gss/sspi
•cert

•Allow static or pattern mapping

User name mapping
•pg_hba.conf
local all all peer map=local
hostssl all all 0.0.0.0/0 cert map=cert

•pg_ident.conf
local root postgres
..
cert /^cn=(.*)$/ \1

Secure PostgreSQL
Deployment

Secure PostgreSQL
Deployment

•Determine your requirements
•Determine your trust levels
•Determine your attach surface
•Determine your threat vectors

Secure PostgreSQL
Deployment

•Deploy correct countermeasures
•"Checkbox featuring" is useless

•Lock all doors
•E.g. why encrypt if disks are insecure
•Why require smartcards if data is cleartext

Layered security
•A firewall alone doesn't protect you
•Doesn't mean you shouldn't have one

Too simple to mention
•Never use trust

•(not even in testing)
•Use pg_hba.conf

•Mix auth methods
•Restrict IP addresses

•Go SSL if you have to

Iterative process
•Re-evaluate
•Requirements and landscape are dynamic!

Thank you!
Magnus Hagander

magnus@hagander.net
@magnushagander

	Magnus Hagander
	Security
	Security
	Security
	Security
	Security
	Security
	Secure PostgreSQL Deployment
	Secure PostgreSQL Applications
	Secure PostgreSQL Environment
	Operating system
	Operating system
	Operating system
	Operating system
	Multi instance
	Securing communications
	Securing communications
	Securing communications
	SSL in PostgreSQL
	Certificates
	Server-side SSL
	SSL negotiation
	SSL negotiation
	SSL negotiation
	SSL enforcement
	SSL enforcement
	Client certificates
	Client certificates
	Authentication
	Authentication
	A step back
	Superuser
	Authentication
	pg_hba.conf
	pg_hba.conf
	Authentication methods
	trust
	trust
	peer
	md5
	ldap
	ldap
	gss/sspi
	radius
	cert
	User name mapping
	User name mapping
	Secure PostgreSQL Deployment
	Secure PostgreSQL Deployment
	Secure PostgreSQL Deployment
	Layered security
	Too simple to mention
	Iterative process

