
Replication Security

PGConf NYC, 2014
New York City, NY

Magnus Hagander
magnus@hagander.net

PRODUCTS • CONSULTING • APPLICATION MANAGEMENT • IT OPERATIONS • SUPPORT • TRAINING

Magnus Hagander
•PostgreSQL

•Core Team member
•Committer
•PostgreSQL Europe

•Redpill Linpro
•Infrastructure services
•Principal database consultant

Replication security
•Increase of distributed systems
•Sometimes just local DC failover
•Cross-DC availability solution
•Geo/net-local performance
•(OK, I'll say it, cloud)

Two separate use cases
•Replication for failover

•Server or data center HA
•Replication for performance

•"Reporting nodes"
•"Local read copy"

•Different security concerns!

Evolution of PostgreSQL
replication

•erserver
•Slony
•Londiste
•etc

Evolution of PostgreSQL
replication

•8.3 added pg_standby
•9.0 added Streaming Replication
•9.0 added Hot Standby
•9.1 added Synchronous Replication
•9.4 will add logical replication

PostgreSQL replication
recap

•Starts from base backup
•Streams all transaction log

•pg_xlog contents
•Fallback to file-based through archive

•Same pg_xlog contents

PostgreSQL replication
recap

•Always cluster wide!
•Everything passes the replication channel

•Eventually
•Database objects are identical

•Users, roles, passwords
•Permissions on all objects

PostgreSQL replication
recap

•Configuration files not identical
•By default included in base backup

•Depends on platform (hi, Debian!)
•postgresql.conf

•Different memory settings on report nodes?
•pg_hba.conf / pg_ident.conf

•Login and security settings

pg_hba.conf considerations
•Contents are not in sync
•Useful on read nodes

•Different users/nets
•Different replication permissions
•Different security requirements

pg_hba.conf considerations
•Contents are not in sync
•Trouble at failover?

•Different users can log in
•Wrong database access
•Can new replication nodes log in?

•Enforce and/or audit!

Database grants
•Same on master and slave
•Create reporting users on master
•Even if only used on slave
•Control access using pg_hba.conf

Streaming replication
•Uses standard Postgres connection
•To "virtual" database 'replication'
•Requires REPLICATION privilege

•(or superuser)
•Can use standard PostgreSQL security features

REPLICATION privilege
•Attribute on user role

•Not a grantable permission
•Like superuser, createdb, createuser

CREATE USER replica WITH REPLICATION
•Can be combined with other attributes
CREATE USER replica
 WITH REPLICATION CONNECTION LIMIT 2

REPLICATION privilege
•Still a very high level privilege

•Will see the whole database
•"Read-only superuser"
•Offline attacking etc
•(9.4: block pg_xlog recycling)

REPLICATION privilege
•Always use instead of superuser

•Especially for read nodes
•Separation of privileges!
•No code execution
•No writing of files

Replication connection
•Uses standard PostgreSQL connection
•Standard authentication
•Standard security
•Treat as sensitive!

Replication vs pg_hba.conf
•"Virtual" database replication
•Not matched by all
•Always requires specific line

A bad example from reality
•When does this make sense
..
host all all 10.0.0.0/24 md5
..
host replication replica 10.0.0.0/24 trust
..

A bad example from reality
•Or this
..
hostssl all all 10.0.0.0/24 md5
..
host replication replica 10.0.0.0/24 md5
..

Authentication
•All authentication methods are supported
•Never use trust
•md5 often a good choice

•Easy to automate

Centralized authentication
•Centralized authentication typically a bad idea
•ldap

•Usually not a good choice
•External dependency for HA

•gss
•Need to manage initial ticket
•Need to manage ticket expiry

Network access
•Always limit network as much as possible
•By node or subnet

•Not including application servers etc
•Consider NAT issues

•Always restrict to replication user only

SSL
•A good choice for cross-DC replication
•Long-lived connections have lower overhead
•Consider certificate authentication!
..
host replication replica 10.0.0.5/32 cert clientcert=1
..

SSL
•Always verify server certificate
•Consider compression overhead

•Disable on fast networks
primary_conninfo = 'user=replica host=10.0.0.1
 sslmode=verify-full sslcompression=0'

Base backups
•Everything starts from base backup
•Secure as well (obviously)
•Making base backups

•pg_basebackup
•Manual

pg_basebackup
•Same security as replication will have
•So set up with same account/user
•Can use -R to create recovery.conf
•Use -d for connection string
pg_basebackup -D data.slave -P -R -d \
 "host=10.0.0.1 user=replica \
 sslmode=verify-full sslcompression=0"

Manual base backups
•Manual call to pg_start_backup/pg_stop_backup

•Replication user needs access to regular database
•Backup files with "whatever technology"

•Make sure this technology is secure
•Typical uses are rsync or tar
•Probably over ssh!

Pull or push base backups
•Push from master

•Initiate rsync job on master
•Master needs write permissions on slave

•Or pull on slave
•Initiate rsync job on slave
•Slave needs read permissions on master

•Or pull from backups
•When full log archive exists

Remote SSH access
•Typical authorized_keys:
ssh-rsa AAAAB3NzaC1yc2EAAAABJQAAAIEAtk/kI... postgres@domain

•Share keys between multiple slaves?
•Manage key distribution!

Remote SSH access
•Typical authorized_keys:
ssh-rsa AAAAB3NzaC1yc2EAAAABJQAAAIEAtk/kI... postgres@domain

•Allows complete read access to system!
•(or write if this was push)

•And arbitrary command execution!
•Restrict commands:
command="rsync --server ..." ssh-rsa AAA... postgres@domain

•(run rsync in verbose mode to find exact command)

Log archive
•Similar concerns as manual base backups

•Should always be push
•Push controlled by PostgreSQL

•Centralized log archive reduces key mesh
•Consider for base backup distribution

•Control access per server

Encrypting logs and
backups

•Depends on "trust domains"
•Do you trust backup/log location less than slaves?
•If not, then no point
•"Yes" is fairly common

•E.g. S3 or other cloud stores

Encrypting logs and
backups

•Supported by some tools
•Just encrypt all files before sending

•Consider sending locally first!
•Same scenario as compression

•Encryption is slow, decryption is fast
•Symmetric shared-key easiest

•Or just use GPG

Synchronous replication
•Adds extra DOS possibility
•Forcing sync slaves to disconnect
•Use up all connections

Synchronous replication
•Log in and "pretend" to be sync

•Sync rep trusts client!
•(Nope, "secret" application names don't work)
•Restrict your replication clients!

•Never use "*" for client names
•For non-security reasons

Conclusions
•Replication sees all your data
•"Keys to the kingdom"
•It's not hard to secure it
•But needs to be part of security design

Thank you!
Magnus Hagander

magnus@hagander.net
@magnushagander

	Magnus Hagander
	Replication security
	Two separate use cases
	Evolution of PostgreSQL replication
	Evolution of PostgreSQL replication
	PostgreSQL replication recap
	PostgreSQL replication recap
	PostgreSQL replication recap
	pg_hba.conf considerations
	pg_hba.conf considerations
	Database grants
	Streaming replication
	REPLICATION privilege
	REPLICATION privilege
	REPLICATION privilege
	Replication connection
	Replication vs pg_hba.conf
	A bad example from reality
	A bad example from reality
	Authentication
	Centralized authentication
	Network access
	SSL
	SSL
	Base backups
	pg_basebackup
	Manual base backups
	Pull or push base backups
	Remote SSH access
	Remote SSH access
	Log archive
	Encrypting logs and backups
	Encrypting logs and backups
	Synchronous replication
	Synchronous replication
	Conclusions

