New and cool in PostgreSQL

ConFoo 2016
Montreal, Canada

Magnus Hagander
magnus@hagander.net

Magnus Hagander

e Redpill Linpro

= Infrastructure services

= Principal database consultant
e PostgreSQL

= Core Team member

= Committer

= PostgreSQL Europe

PostgreSQL

The World's Most Advanced Open Source Database
Yeah?

PostgreSQL

e Long history
= Berkeley Postgres: 1986
= Postres95: 1994
= PostgreSQL: 1996

PostgreSQL

High speed of development

No longer just "catchup”

Many brand new things

Some catchup too, of course

= Oracle's been around since 1978-1979...

PostgreSQL

e Releases approx 1/year
e 5yearsupport lifecycle
= Current: 9.5 (Jan 2016)
= Oldest: 9.1 (Sep 2011)

What's new and cool

e Big things in every version
e Let's pick acouple
e Across 9.2,9.3 and 9.4 (mainly)
e Mix of developer and DBA
= Mostly developer today!

Foreign Data Wrappers

Foreign Data Wrappers

e Access datain remote databases
e Asregulartables

postgres_fdw

No more dblink required (still supported!)
Access remote PostgreSQL servers "properly”
Supports remote cost estimates

Pushes down quals (when possible)

= 9.6 will push down joins

Writeable FDWs

Ability to update foreign tables
INSERT/UPDATE/DELETE

Transaction aware (of course)

Can be slow for complicated updates/deletes
Requires FDW specific support

Foreign Data Wrappers

CREATE SERVER remotepg
FOREIGN DATA WRAPPER postgres_fdw
OPTIONS (host 'localhost', dbname 'pagila', port '5432'")

CREATE USER MAPPING FOR mha SERVER remotepg

CREATE FOREIGN TABLE actor (
actor_id int, first_name varchar(45),
last_name varchar(45), last_update timestamp

)
SERVER remotepg

Foreign Data Wrappers

postgres=# select * FROM actor WHERE first_name='BOB';

actor_id | first_name | last_name | last_update

---------- R T T S
19 | BOB | FAWCETT | 2012-03-15 14:53:16.211411

(1 row)

postgres=# UPDATE actor SET first_name='BOBBY'

postgres=- WHERE first_name='BOB';

UPDATE 1

postgres=# SELECT count(*) FROM actor INNER JOIN localnames
postgres-# ON actor.first_name=localnames.first_name;

count

Other FDWs

csv files
e Oracle
e MySQL
e Redis
e MongoDB
e ODBC

Range types

Range types

e Store ranges of something

= Generic framework

= Built-in for int, numeric, timestamp, date
e Query ranges of something
e Constrain ranges of something

Storing ranges

Traditional way

CREATE TABLE meetings (
start_time timestamptz NOT NULL,
end_time timestamptz NOT NULL,
room int NOT NULL REFERENCES rooms,
title text NOT NULL

)

Storing ranges
Using range types

CREATE TABLE meetings_r (
blocktime tstzrange NOT NULL,
room int NOT NULL REFERENCES rooms,
title text NOT NULL

)

Inserting range values

INSERT INTO meetings VALUES (
'2015-06-11 14:00', '2015-06-11 15:00',
1, 'First meeting')

INSERT INTO meetings_r VALUES (
tstzrange('2015-06-11 14:00', '2015-06-11 15:00'),
1, 'First meeting')

Querying ranges

e Find any overlapping entries

e Ra

s the conference room free?
_et's say from 14:30-15:30

nidly becomes complicated

Querying ranges

SELECT * FROM meetings

WHERE room = 1 AND (
'2015-06-11 14:30' <= start_time AND
'2015-06-11 15:30' >= start_time AND
'2015-06-11 14:30' <= end_time AND
'2015-06-11 15:30' <= end_time

)
OR (

e And what about open/closed ranges?

Querying ranges

SELECT * FROM meetings_r
WHERE room=1 AND
blocktime &&
tstzrange('2015-06-11 14:30', '2015-06-11 15:30")

Querying ranges

e &&is an indexable operator!
e GIST and SP-GIST indexes
e Including multi-key!

Constraining ranges

e Concurrency for check

e |sthe room available or not?
o

o

But someone books it while we're typing!
Can use EXCLUSION constraints

Constraining ranges

ALTER TABLE meetings_r
ADD CONSTRAINT no_double_bookings
EXCLUDE USING GIST (
room WITH =,
blocktime WITH &&

Over to queries

Ordered set aggregates

Ordered set aggregates

e "Offsetin group" aggregates
e WITHIN GROUP
e Also hypothetical aggregates

Ordered set aggregates

Most common value in group

SELECT a,
mode() WITHIN GROUP (ORDER BY b)
FROM agg GROUP BY a

Ordered set aggregates

Percentiles

SELECT a,
percentile_cont(0.3) WITHIN GROUP (ORDER BY b),
percentile_disc(0.3) WITHIN GROUP (ORDER BY b)
FROM agg GROUP BY a

Ordered set aggregates

Hypothetical rows

SELECT a,
rank(4) WITHIN GROUP (ORDER BY b),
percent_rank(4) WITHIN GROUP (ORDER BY b)
FROM agg GROUP BY a

Unstructured data

JSON

JSONB

"Binary json"

Parsed JSON data

Previous json datatype just stores text
Basic datatyping

JSONB

e Key-independent indexes
e Nested structure support
e Containment operators (and others)

JSONB

e Just another datatype
e Max 1GB, automatically compressed

CREATE TABLE jsontable (
.. columns ..
j JSONB

)

JSONB

INSERT INTO jsontable (..., J)
VALUES (...,
"{"name": "Magnus",
"skills": {
"database": ["sqgl", "postgres"],
"other": ["something"],
ks
')

JSONB operators

e Key and sub-object access is easy
SELECT j->>"name' FROM jsontable
SELECT j->'skills' FROM jsontable
SELECT j->'skills'->'database' FROM jsontable

SELECT j#>'{skills,database,0}' FROM jsontable

JSONB searching

e Easy key searching
e Requires key per index
= Similar to MongoDB etc

SELECT * FROM jsontable
WHERE j->>'name' = 'Magnus'

e Butyou didn't need jsonb for that

JSONB searching

e Path operators are more powerful!

SELECT * FROM jsontable
WHERE j @> '{"name":"Magnus"}'

e Support for deeper paths

SELECT * FROM jsontable
WHERE j @> '{"skills": {
"database": ["postgresql"]
b
} 1

JSONB indexing

e Generic jsonb index

CREATE INDEX json_idx
ON jsontable USING gin(j)

e Path operator only index

CREATE INDEX json_idx
ON jsontable USING gin(j jsonb_path_ops)

JSONB indexes

e Very efficient indexes!
e Small!
e Fast (especially jsonb_path_ops)
e Some benchmarks:
= 1 million rows
= 200 fields in json
= (Thanks Christophe Pettus!)

JSONB indexes

e avg query time (ms)

S TS T F A
PG GIN jsonb_pattern_ops

JSONB indexes

e avg query time (ms)

2.25

1.5 —

0.75

0
PG GIN Index PG GIN jsonb_pattern_ops Mongo Field Index

Relational still wins

e avg query time (ms)

Be smart!

Relational still faster

If your data fits relational model
Combine both!

Known fields get a column
Dynamic fields share a jsonb

Summary

New and cool in PostgreSQL

e Plenty of new things!
e Plenty of cool things!
e Go try it out!

http://www.postgresql.org/download/

Thank youl!

Magnus Hagander
magnus@hagander.net
@magnushagander
http://www.hagander.net/talks/

This material is licensed
: B (Rl

