
Integrated cache invalidation for better hit rates

FOSDEM PGDay 2014
Brussels, Belgium

Magnus Hagander
magnus@hagander.net

PRODUCTS • CONSULTING • APPLICATION MANAGEMENT • IT OPERATIONS • SUPPORT • TRAINING

Magnus Hagander
•PostgreSQL

•Core Team member
•Committer
•PostgreSQL Europe

•Redpill Linpro
•Infrastructure services
•Principal database consultant

We've all heard
"
There are only two hard
things in Computer Science:

Cache invalidation and naming things.
"

Phil Karlton

Scenario
•We're building a website

•(Sorry all you backend people!)
•Let's do a webshop!

Picking our poisons
•PostgreSQL
•Django

•Whatever webserver you choose
•Varnish

Simple database schema
•We'll ignore most requirements
•No payments

•But we'll have dynamic pricing
•And inventory

•Just articles and groups

Simple database schema
class ArticleGroup(models.Model):
 groupname = models.TextField(null=False)

class Article(models.Model):
 articlename = models.TextField(null=False)
 price = models.DecimalField(decimal_places=2,
 max_digits=10, null=False)
 stock = models.IntegerField(null=False)
 group = models.ForeignKey(ArticleGroup)

Simple database schema
CREATE TABLE myshop_articlegroup(
 id SERIAL NOT NULL PRIMARY KEY,
 groupname text NOT NULL);

CREATE TABLE myshop_article(
 id SERIAL NOT NULL PRIMARY KEY,
 articlename text NOT NULL,
 price numeric(10,2) NOT NULL,
 stock int NOT NULL,
 group_id int NOT NULL
 REFERENCES myshop_articlegroup(id));

Basic views
•We need to be able to view an article
•Any (web) designers in the audience?

Basic views
def index(request):
 articles = Article.objects.all()
 return render_to_response('index.html', {
 'articles': articles,
 })

Basic views
def article(request, articleid):
 article = get_object_or_404(Article, id=articleid)
 return render_to_response('article.html', {
 'article': article,
 })

Basic views
urlpatterns = patterns('',
 url(r'^$', 'myshop.views.index'),
 url(r'^article/(\d+)/$', 'myshop.views.article'),
 ...

Works for a while
•Fully dynamic actually scales reasonably well

•Modern servers are surprisingly fast
•We can tweak some simple things

•Static assets to CDN, for example
•Helps with bandwidth, but not much more

And then...

Typical solutions
•More servers
•Even more servers
•Yet more servers
•(this can get expensive)

Typical solutions
•Cache!
•Faster deliveries and less load
•This is what we'll look at here

Caching
•Put a Varnish instance in front

•(obviously >1 for redundancy, but..)
•Control cache time from application

Caching
@cache(minutes=30)
def article(request, articleid):
...

@cache(minutes=5)
def index(request):
...

Caching
def cache(hours=0, minutes=0, seconds=0):
 def _cache(fn):
 def __cache(request, *_args, **_kwargs):
 resp = fn(request, *_args, **_kwargs)
 td = datetime.timedelta(hours=hours,
 minutes=minutes,
 seconds=seconds)
 resp['Cache-Control'] = 's-maxage=%s' % td.seconds
 return resp
 return __cache
 return _cache

Caching
mha@mha-laptop:~$ curl -I http://localhost:9000/article/2/

HTTP/1.0 200 OK
Date: Sun, 19 Jan 2014 14:20:37 GMT
Server: WSGIServer/0.1 Python/2.7.3
Content-Type: text/html; charset=utf-8
Cache-Control: s-maxage=1800

Problems!
•Our inventory is now out of date

•Up to 30 minutes!
•Our article list is now out of date

•Up to 10 minutes!
•Our prices are out of date!

•Everybody uses dynamic pricing, right?

Quick-fix
•Decrease cache-times
•Whatever is the maximum acceptable

•30 seconds? 10 seconds? 1 second?
•Leads to bad cache hitrates
•Still helps with peak-removal
•But only for popular articles

Better fix
•Forced cache invalidation
•Leave data in cache for a long time
•Only remove when it actually changes

•But remove it quickly

Simple
•Trap object saving in Django
•Generate request to Varnish
•Varnish purges object

Simple
class Article(models.Model):
 ...
 def save(self, *args, **kwargs):
 super(Article, self).save(*args, **kwargs)
 conn = httplib.HTTPConnection('localhost:9001')
 conn.request('PURGE', '/article/%s/' % self.pk)
 conn.getresponse()
 conn.close()

Ouch!
•Did that make your eyes hurt?

•Code in the model!
•Model needs to know about URLs
•Still didn't purge the index page
•What if the change didn't come through Django

Code in the model
•This is fairly easy to fix
•Use signals or wrappers, etc

Model needs to know about
URL

•Models should not care about this
•Maybe even views shouldn't
•Need to decouple and use something else

•URLs are too dynamic

Still didn't purge the
index page

•Same basic problem
•Model needs to know about URLs

•Just more than one
•Gets worse in realistic scenarios

•Subsections? Promotions? ...
•Need to invalidate based on content

•Not URL

Non-django changes
•All changes don't come through the webapp

•Maybe today, but that won't last
•Batch loads
•Direct database edits
•Other applications

•Direct access vs API

Next step
•All articles have a primary key

•Surrogate key required by Django
•Guaranteed by database

•All changes happen in the database
•Regardless of source

Next step
•Invalidate cache based on primary key
•Invalidate cache from the database

Key based invalidation
•Need to tell cache about articles
•So it can separate them from URLs
•"Surrogate http header"

Modified views
@cache(minutes=30)
def article(request, articleid):
 article = get_object_or_404(Article, id=articleid)
 return contains_articles(
 render_to_response('article.html', {
 'article': article,
 }),
 article.pk)

Modified views
@cache(minutes=5)
def index(request):
 articles = Article.objects.all()
 return contains_articles(
 render_to_response('index.html', {
 'articles': articles,
 }),
 ','.join([str(a.pk) for a in articles]))

Header wrapper
def contains_articles(resp, articles):
 resp['X-articles'] = articles
 return resp

Results
mha@mha-laptop:~$ curl -I http://localhost:9000/

HTTP/1.0 200 OK
Date: Sun, 19 Jan 2014 14:43:52 GMT
Server: WSGIServer/0.1 Python/2.7.3
Content-Type: text/html; charset=utf-8
X-articles: 2,3,1
Cache-Control: s-maxage=300

Invalidate from the db
CREATE OR REPLACE FUNCTION invalidate_article()
 RETURNS trigger LANGUAGE plpythonu
AS $$
import httplib
id = TD['new']['id']
conn = httplib.HTTPConnection('localhost:9001')
conn.request('PURGE', '/article/%s/' % id)
conn.getresponse()
conn.close()
$$

Invalidate from the db
CREATE TRIGGER articles_trigger
AFTER UPDATE OR DELETE
ON myshop_article
FOR EACH ROW EXECUTE PROCEDURE
 invalidate_article();

Multiple URLs at once

Multiple URLs at once

http://xkcd.com/208/

Combined
CREATE OR REPLACE FUNCTION invalidate_article()
 RETURNS trigger LANGUAGE plpythonu
AS $$
import httplib
id = TD['new']['id']
conn = httplib.HTTPConnection('localhost:9001')
conn.request('POST', '/_api/purge', '', {
 'X-articleexpr': '(^|,)%s(,|$)' % id})
conn.getresponse()
conn.close()
$$

Combined
sub vcl_recv {
 ..
 # Check for our own purge requests
 if (req.url == "/_api/purge" && req.request == "POST") {
 if (!client.ip ~ purge) {
 error 405 "Not allowed.";
 }
 ban("obj.http.x-articles ~ " . req.http.X-articleexpr);
 error 200 "Purged.";
 }
 ..
}

Still ugly...
•http calls from inside the database!
•What if the cache is down?

•Could be a network hiccup?
•Or just very slow?
•Or there is more than one?

Use a queue
•Any message queue
•That delivers to all listeners
•And keeps a backlog

pgq
•Simple PostgreSQL based queue
•Part of skytools
•Independent or cooperative consumers
•SQL API

•Wrappers in other languages
•Python, PHP, ...

•Transactional

pgq
•Ticker daemon

•Makes things happen
•Must always be running

•Consumers
•Per queue code
•Runs when things are posted
•Grouped batches

Consumer
class MyPurger(pgq.Consumer):
 def process_batch(self, db, batch_id, ev_list):
 for ev in ev_list:
 if ev.type == 'A':
 conn = httplib.HTTPConnection('localhost:9001')
 conn.request('POST', '/_api/purge', '', {
 'X-articleexpr': '(^|,)%s(,|$)' % ev.data,
 })
 conn.getresponse()
 conn.close()

Simplified trigger
CREATE OR REPLACE FUNCTION public.invalidate_article()
 RETURNS trigger LANGUAGE plpgsql
AS $$
 BEGIN
 PERFORM pgq.insert_event('varnish', 'A', NEW.id::text);
 RETURN NEW;
 END
$$

Conclusions
•The database is a point of integration

•Whether you like it or not
•Use it!

•Surrogate keys are a reality
•Whether you like it or not
•Use it!

Conclusions
•Caching will save you at some point

•Make sure you are prepared
•Doesn't mean you have to give up features

•Just be prepared
•Don't break layers until you have to

Conclusions
•Smart caching >> naive caching

•Choose the right tools
•Use the tools you have!

Thank you!
Magnus Hagander

magnus@hagander.net
@magnushagander

	Magnus Hagander
	We've all heard
	Scenario
	Picking our poisons
	Simple database schema
	Simple database schema
	Simple database schema
	Basic views
	Basic views
	Basic views
	Basic views
	Works for a while
	And then...
	Typical solutions
	Typical solutions
	Caching
	Caching
	Caching
	Caching
	Problems!
	Quick-fix
	Better fix
	Simple
	Simple
	Ouch!
	Code in the model
	Model needs to know about URL
	Still didn't purge the index page
	Non-django changes
	Next step
	Next step
	Key based invalidation
	Modified views
	Modified views
	Header wrapper
	Results
	Invalidate from the db
	Invalidate from the db
	Multiple URLs at once
	Multiple URLs at once
	Combined
	Combined
	Still ugly...
	Use a queue
	pgq
	pgq
	Consumer
	Simplified trigger
	Conclusions
	Conclusions
	Conclusions

