
 

Using git to develop a 
PostgreSQL patch

pgcon.br 2009
Campinas, Brazil

Magnus Hagander
Redpill Linpro AB



 

PostgreSQL development
● As you know...
● Master repository CVS
● Limited group of committers
● Patch-on-list based



 

GIT development
● As you may know...
● Distributed Version Control
● Each his own master
● Easy branching, easy merging
● push/pull



 

No overlap?!
● Anonymous git mirror

– git.postgresql.org

● Community experience



 

«Old» development process

anoncvs.postgresql.org

Developer

1. Fetch source

2. Develop patch

3. Email patch

Reviewers

Committer

cvs.postgresql.org



 

Room for improvement

git.postgresql.org

Developer

1. Fetch source

2. Develop patch

3. Email patch

Reviewers

Committer

cvs.postgresql.org



 

Obvious advantages
● Offline access
● Full history access
● Much much faster



 

Easy: differences are small
● cvs checkout...
● cvs update
● cvs diff
● cvs log
● cvs annotate

● git clone...
● git pull
● git diff
● git log
● git blame



 

DEMO TIME!



 

PostgreSQL prefers diff -c
● Git native diff does not produce
● Use filterdiff:
git diff | filterdiff –format=context

● Alias!
● No more highlighting...



 



 

The real advantage

git.postgresql.org

Developer

1. Fetch source

2. Develop patch

3. Email patch

Reviewers

Committer

cvs.postgresql.org



 

Git: Feature branches
● Branch creation is easy
● Branch creation is cheap
● Branch creation is fast
● Conclusion: create lots of 

branches



 

One branch for each feature
● Commit to local branch

– Nobody will see it!

● Commit often!
– Incremental development!
– Rollback your mistakes
– Examine incremental changes



 

DEMO TIME!



 

One branch for each feature
● Still send a patch to the list, just 

like before
● PostgreSQL does not like the on-

patch-per-commit format
– Other git projects do!
– Notably the Linux kernel



 

Merge or rebase
● Upstream changes during 

development
● Maybe different files, maybe same
● Update often to avoid conflicts



 

Merge or rebase
● «git pull» will do:

– fetch
– merge

● «git pull –rebase» will do:
– store all changes
– fetch
– update
– re-apply your changes



 

Next step: sharing branches

git.postgresql.org

Developer

1. Fetch source

2. Develop patch

3. Email patch

Reviewers

Committer

cvs.postgresql.org

git.postgresql.org/users/mha/



 

Sharing your branches
● Set up a repository on

git.postgresql.org
● Push your branch
● Others can pull your branch
● Suddely, you're sharing!



 

Not sharing your mistakes?
● Once pushed, you can never 

remove it
– Well, you should never...

● What about all those tiny 
commits?



 

Rebase to the rescue
● Use

 
git rebase origin/master –interactive

● Squash commits into single ones
● Edit commit messages
● ONLY before you push!



 

DEMO TIME!



 

Using git for testing
● A good way to get cross platform
● For example, testing on Windows

– Consider Amazon EC2, see

http://blog.hagander.net/archives/151-Testing-
PostgreSQL-patches-on-Windows-using-Amazon-
EC2.html



 

Using git to develop a 
PostgreSQL patch

Questions?

magnus@hagander.net
Twitter: @magnushagander

http://blog.hagander.net


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

