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PostgreSQL development
● As you know...
● Master repository CVS
● Limited group of committers
● Patch-on-list based



 

GIT development
● As you may know...
● Distributed Version Control
● Each his own master
● Easy branching, easy merging
● push/pull



 

No overlap?!
● Anonymous git mirror

– git.postgresql.org

● Community experience



 

«Old» development process
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Room for improvement
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Obvious advantages
● Offline access
● Full history access
● Much much faster



 

Easy: differences are small
● cvs checkout...
● cvs update
● cvs diff
● cvs log
● cvs annotate

● git clone...
● git pull
● git diff
● git log
● git blame



 

DEMO TIME!



 

PostgreSQL prefers diff -c
● Git native diff does not produce
● Use filterdiff:
git diff | filterdiff –format=context

● Alias!
● No more highlighting...



 



 

The real advantage
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Git: Feature branches
● Branch creation is easy
● Branch creation is cheap
● Branch creation is fast
● Conclusion: create lots of 

branches



 

One branch for each feature
● Commit to local branch

– Nobody will see it!

● Commit often!
– Incremental development!
– Rollback your mistakes
– Examine incremental changes



 

DEMO TIME!



 

One branch for each feature
● Still send a patch to the list, just 

like before
● PostgreSQL does not like the on-

patch-per-commit format
– Other git projects do!
– Notably the Linux kernel



 

Merge or rebase
● Upstream changes during 

development
● Maybe different files, maybe same
● Update often to avoid conflicts



 

Merge or rebase
● «git pull» will do:

– fetch
– merge

● «git pull –rebase» will do:
– store all changes
– fetch
– update
– re-apply your changes



 

Next step: sharing branches
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Sharing your branches
● Set up a repository on

git.postgresql.org
● Push your branch
● Others can pull your branch
● Suddely, you're sharing!



 

Not sharing your mistakes?
● Once pushed, you can never 

remove it
– Well, you should never...

● What about all those tiny 
commits?



 

Rebase to the rescue
● Use

 
git rebase origin/master –interactive

● Squash commits into single ones
● Edit commit messages
● ONLY before you push!



 

DEMO TIME!



 

Using git for testing
● A good way to get cross platform
● For example, testing on Windows

– Consider Amazon EC2, see

http://blog.hagander.net/archives/151-Testing-
PostgreSQL-patches-on-Windows-using-Amazon-
EC2.html
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Questions?

magnus@hagander.net
Twitter: @magnushagander

http://blog.hagander.net
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