A look at the Elephants Trunk
PostgreSQL 17

PGDay UK 2024
London, UK

Magnus Hagander
magnus@hagander.net

Magnus Hagander

e Redpill Linpro

= Principal database consultant
e PostgreSQL

= Core Team member

= Committer

= PostgreSQL Europe

PostgreSQL 17

Development schedule

e June 2023 - branch 16
e July 2023 -CF1

e September 2023 - CF2
e November 2023 - CF3
e January 2024 - CF4

e March 2024 - CF5

e September 2024 - RC1

Current status

e 2635 commits
e 3940 files changed, 409815 insertions(+), 205642 deletions(-)

New features

e DBA and administration
e SQL and developer

e Backup and replication
e Performance

Breaking changes

Building

e Windows MSVC builds
o AIXsupport
e --disable-thread-safety

Removed features

e adminpack
e db_user_namespace
e snapshot too old

pg_stat_bgwriter

Removed checkpoints_timed & req
Removed write_time & sync_time
Removed buffers_checkpoint, backend & fsync

Breaking change

e search_path during maintenance ops
s Secured by default!
s Must be explicit!

New features

e DBA and administration
e SQL and developer

e Backup and replication
e Performance

timeout

e transaction timeout

Event triggers

Event triggers

e REINDEX event triggers

Event triggers

e REINDEX event triggers
e Login event triggers

Event triggers

e REINDEX event triggers
e Login event triggers
= Footgun extraordinaire!

Event triggers

e REINDEX event triggers
e Login event triggers

= Footgun extraordinaire!
e event_triggers=false

Wait events

* pg_wait_events

postgres=# SELECT * FROM pg_wait_events WHERE name='PgSleep';
type | name | description

Timeout | PgSleep | Waiting due to a call to pg_sleep or a sibling function
(1 row)

Wait events

e Custom wait events for extensions

Statistics!

pg_stat_bgwriter

Removed checkpoints_timed & req
Removed write_time & sync_time
Removed buffers_checkpoint, backend & fsync

pg_stat_checkpointer

postgres=# select * from pg_stat_checkpointer ;

-[RECORD 1]------- LT
num_timed |
num_requested |
restartpoints_timed |
restartpoints_req |
restartpoints_done |
write_time |
sync_time |
buffers_written |

pg_stat_statements

e Local block1/0O timing

e Entry time
local_blk_read_time | ©
local_blk_write_time C)
stats_since | 2024-03-09 15:39:11.483719+01

minmax_stats_since | 2024-03-09 15:39:11.483719+01

pg_stat_statements

e Normalize parameters in CALL

queryid | 1774110370767368945
query | call dummyproc($1, $2)

pPg_stat_vacuum_progress

e Shows index progress

phase | vacuuming indexes

indexes_total | 5
indexes_processed | 3

EXPLAIN (SERIALIZE

e Show time and memory to serialize data

postgres=# EXPLAIN (ANALYZE, SERIALIZE) SELECT * FROM pg_class;
QUERY PLAN

Seg Scan on pg_class (cost=0.00..18.15 rows=415 width=273) (actual time=0.017.
Planning Time: 0.099 ms

Serialization: time=1.915 ms output=84kB format=text

Execution Time: 2.089 ms

(4 rows)

COPY

postgres=# COPY dummy FROM '/tmp/test.csv' WITH (FORMAT csv);

2024-03-09 15:53:00.105 CET [3613894] ERROR: invalid input syntax for type integ
2024-03-09 15:53:00.105 CET [3613894] CONTEXT: COPY dummy, line 2, column b: "f¢
2024-03-09 15:53:00.105 CET [3613894] STATEMENT: COPY dummy FROM '/tmp/test.csv
ERROR: invalid input syntax for type integer: "foo"

CONTEXT: COPY dummy, line 2, column b: "foo"

COPY

e Error handling!

postgres=# COPY dummy FROM '/tmp/test.csv' WITH (FORMAT csv);

2024-03-09 15:53:00.105 CET [3613894] ERROR: invalid input syntax for type integ
2024-03-09 15:53:00.105 CET [3613894] CONTEXT: COPY dummy, line 2, column b: "f¢
2024-03-09 15:53:00.105 CET [3613894] STATEMENT: COPY dummy FROM '/tmp/test.csv
ERROR: invalid input syntax for type integer: "foo"

CONTEXT: COPY dummy, line 2, column b: "foo"

postgres=# COPY dummy FROM '/tmp/test.csv' WITH (FORMAT csv, ON_ERROR 'ignore');
NOTICE: 1 row was skipped due to data type incompatibility
COPY 2

Maintenance permissions

e Grant maintenance tasks to non-table-owners
= VACUUM, ANALYZE
= CLUSTER
= REINDEX
= REFRESH MATERIALIZED VIEW
= | OCK TABLE

Maintenance permissions

postgres=# GRANT MAINTAIN ON mytable TO testuser;
GRANT

postgres=# GRANT pg_maintain TO testuser;
GRANT

builtin locale provider

e Only for "C" and "C.UTF-8"
e Faster!
e Stable!

Direct TLS handshake

e Without negotiation
= Saves a roundtrip
= Friendlier to proxies
e Always with ALPN
e sslnegotiation=direct

allow_alter_system

e Disablethe ALTER SYSTEM command

 NOT a security feature
e Superusers can still change configuration!

New features

e DBA and administration
e SQL and developer

e Backup and replication
e Performance

PQchangePassword

e New libpqg function
e Useto.... Change passwords!
e Used to be psqgl-only

Binary and octal

postgres=# SELECT to_bin(123), to_oct(123);
to_bin | to_oct
_________ .
1111011 | 173
(1 row)

Infinite intervals

postgres=# SELECT now() + 'infinity',
?column?

infinity

postgres=# SELECT 'infinity'::timestamptz - now();
?column?

infinity

(1 row)

random() range

e Previously just 0-1

T random(9, 42)

MERGE

« WHEN NOT MATCHED BY SOURCE

MERGE

« WHEN NOT MATCHED BY SOURCE

MERGE INTO t1
USING t2 ON tl1.id=t2.1id
WHEN MATCHED THEN
UPDATE SET something=true
WHEN NOT MATCHED THEN
INSERT (id, something) VALUES (t2.id, true)
WHEN NOT MATCHED BY SOURCE THEN
DELETE

MERGE RETURNING

MERGE RETURNING

MERGE INTO t1
USING t2 ON t1.id=t2.1id
WHEN MATCHED THEN
UPDATE SET something=true
WHEN NOT MATCHED THEN
INSERT (id, something) VALUES (t2.id, true)

RETURNING merge_action(), ti1.”

JSONPATH

e Many new operators
e Convert between "data types”
e E.g..string() and .boolean()

SQL/JSON functions

e New functions from the standard
e JSON_EXISTS()
e JSON_QUERY()
e JSON_VALUE()

JSON_TABLE

e Convert JSON to relational
e Like XMLTABLE
e Single value to multiple columns
e |[n one pass

SELECT jt.* FROM
my_films,
JSON_TABLE (js, '$.favorites[*]' COLUMNS (
id FOR ORDINALITY,
kind text PATH '$.kind',
title text PATH '$.films[*].title' WITH WRAPPER,
director text PATH '$.films[*].director' WITH WRAPPER)) AS jt;

id | kind | title | director

1 | comedy | [| ["wWoody Allen", "Francis Veber!
2 | horror | [| ["Alfred Hitchcock"]

3 | thriller | ["Vertigo"] | ["Alfred Hitchcock"]

4 | drama | [| ["Akira Kurosawa']

New features

e DBA and administration
e SQL and developer

e Backup and replication
e Performance

pg_dump

o Get list of include/exclude from file

$ cat /tmp/t.list

include table foo

include table bar

include table something.*

exclude table_data something.foobar

$ pg_dump -Fc -d postgres --filter /tmp/t.list -f ...

Incremental
pg_basebackup

e Back up only changed pages/blocks
e Uses wal summarizer

#wal_summgry_keep_time = '10d'

Incremental
pg_basebackup

e Backup references manifest from full backup

$ pg_basebackup -Fp -D /backup/full

$ pg_basebackup -Fp --incremental=/backup/full/backup_manifest -D /backup/incr

Incremental
pg_basebackup

e To restore, use pg_combinebackup

$ pg_combinebackup -o /backup/combined /backup/full /backup/incr

Incremental
pg_basebackup

e To restore, use pg_combinebackup

$ pg_combinebackup -o /backup/combined /backup/full /backup/incr

e Or combine a long chain if needed

$ pg_combinebackup -o /backup/combined /backup/full /backup/incr /backup/incr2

Preserve subscriptions
across upgrades

e Preserves full subscription state
e pg_upgrade
e Upgrade without rebuilding subscribers

Slot synchronization

e Sync logical replication slots
= Between phsyical replicas
e failover enabled on each slot
m pg_create_logical_replication_slot()
= CREATE SUBSCRIPTION
e Enable sync_replication_slots on standby
e Configure standby_slot_names

pg_createsubscriber

e New commandline tool
e Convert physical to logical
e Much faster initial build!

New features

e DBA and administration
e SQL and developer

e Backup and replication
e Performance

Many infrastructure

e No direct visibility
e Just runs faster
e (almost every version)

COPY performance

e yuid_out
e COPY TO when encoding matches

VACUUM memory

e VACUUM uses much less memory
e Internal datastructure changes

e Often an order of magnitude

e Fewer scans!

Redundant NOT NULL

postgres=# CREATE TABLE foo (a int NOT NULL);
CREATE TABLE

postgres=# INSERT INTO foo SELECT * FROM generate_series(1,1000);
INSERT 0 1000

Redundant NOT NULL

postgres=# EXPLAIN SELECT * FROM foo WHERE a IS NOT NULL,;
QUERY PLAN

Seq Scan on foo (cost=0.00..159.75 rows=11418 width=4)
Filter: (a IS NOT NULL)
(2 rows)

Redundant NOT NULL

postgres=# EXPLAIN SELECT * FROM foo WHERE a IS NOT NULL,;
QUERY PLAN

Seq Scan on foo (cost=0.00..159.75 rows=11418 width=4)
Filter: (a IS NOT NULL)
(2 rows)

postgres=# EXPLAIN SELECT * FROM foo WHERE a IS NOT NULL;
QUERY PLAN

Seq Scan on foo (cost=0.00..159.75 rows=11475 width=4)
(1 row)

Redundant NOT NULL

postgres=# EXPLAIN SELECT * FROM foo WHERE a IS NULL;
QUERY PLAN

Seq Scan on foo (cost=0.00..159.75 rows=57 width=4)
Filter: (a IS NULL)
(2 rows)

Redundant NOT NULL

postgres=# EXPLAIN SELECT * FROM foo WHERE a IS NULL;
QUERY PLAN
Seq Scan on foo (cost=0.00..159.75 rows=57 width=4)
Filter: (a IS NULL)
(2 rows)

postgres=# EXPLAIN SELECT * FROM foo WHERE a IS NULL;
QUERY PLAN
Result (cost=0.00..0.00 rows=0 width=0)
One-Time Filter: false
(2 rows)

Parallelism

e CREATE INDEX for BRIN

SLRU caches

e Divide cachei banks

e Separate locking

e Configure each size independently
m xxxx_buffers

e pg_stat_slru

Vectored |/O

e Numerous operations use it
e Better performance for random
= And foundation for aio

Streaming |/O

e Internal API for streamed I/O
e Callback driven

e Combines reads

e |ssues fadvise

e More foundation for aio

There's always more

There's always more

e Lots of smaller fixes

e Performance improvements
o etc, etc

e Can't mention them all!

Please help!

e Download and test!
= apt packages available
= rpm/yum packages available

Thank you!

Magnus Hagander
magnus@hagander.net
@magnushagander
https://www.hagander.net/talks/

This material is licensed

