
ACME
Not just for rockets anymore!

ConFoo 2017
Montreal, Canada

Magnus Hagander
magnus@hagander.net

Image: Kenneth Lu (flickr)

ACME
New ways of blowing things up

Image: wikipedia

Magnus Hagander
Redpill Linpro

Infrastructure services
Principal database consultant

PostgreSQL
Core Team member
Committer
PostgreSQL Europe

A small case study

The environment
The postgresql.org infrastructure
Around 65 VMs

5 datacenters (4 countries)
1 cloud (aws)

Around 0 staff
(4-5 with 0 dedicated time, at best)

The environment
Debian jessie

Has been lenny>squeeze>wheezy>
Custom config management

Not puppet/chef/etc
Because they sucked at the time
And considering problem scope

(Almost) fully automated

The challenge
Encrypt everything

(well...)
https everywhere the obvious
Also smtp, imap, pgsql, etc, etc
Both public and restricted

Certificate management

The dark ages
Individual service certificates

Manual issuing
Manual renewal

Domain level wildcard certificate
For *.postgresql.org

Nothing for other domains
Shared private keys
Still manual

Enter ACME
Automatic Certificate Management Environment
Best known implementation: LetsEncrypt

LetsEncrypt
Issues domain validated certificates

Same as we had before
Fully automated validation
Short lifetime (90 days)

Requires automation

certbot
Default client for LetsEncrypt

certbot
Requires exposed http services
Tries to auto-config webserver

SCARY

ACME
Is a protocol
Not a client
Multiple ways to verify exists

Just not in default client

ACME dns-01
Issue TXT records in DNS
Better suited for central management

DNS probably already is

ACME dns-01

New set of problems
Centralized key distribution

Private keys in one place
Not good for security!

Or distributed access to DNS
Doable with dynamic DNS
As long as it's controlled

Back to postgresql.org
Existing simple config management
Central API
Client certificate authenticated
Can be leveraged

ACME in pginfra

ACME in pginfra

ACME in pginfra
On the VM

... borka pginfra: Completed user and package checks.

... borka pginfra: Creating certificate request for 5-borka.postgresql.org

ACME in pginfra
On central server

~$./letsencrypt_cron.py
Getting challenges for 1 identifiers
Setting up for 1 remaining challenges
Waiting for 8 more records to show up in DNS
Waiting for 8 more records to show up in DNS
Waiting for 4 more records to show up in DNS
Waiting for 2 more records to show up in DNS
Waiting for 1 more records to show up in DNS
All records present in DNS
Waiting for 1 challenges...
Issued certificate for borka.postgresql.org

ACME in pginfra

ACME in pginfra
Back on the VM

borka pginfra: Downloading certificate 5-borka.postgresql.org
borka pginfra: Replaced file /etc/lighttpd/certfiles/5-borka.postgresql.org.combined contents
borka pginfra: Replaced file /etc/lighttpd/certfiles/5-borka.postgresql.org.chain with /etc/ssl/certs/pginfra_public_5-borka.postgresql.org.chain
borka pginfra: Replaced file /etc/lighttpd/conf-available/_pginfra_auto_ssl.conf contents
borka pginfra: Completed user and package checks.
borka pginfra: Restarting service lighttpd

ACME in pginfra
Keys stay on VM

ACME in pginfra
Services never exposed

ACME in pginfra
Audit trail and certificates archived

What does it look like?
Simple code
acme python module

DNS support not released yet
Using git head version
Same as certbot...

OpenSSL
...

Generating CSR
def sync_public_certificates():
 ...
 for c in certdata:
 if c['csrneeded']:
 key = crypto.PKey()
 key.generate_key(crypto.TYPE_RSA, 4096)
 req = crypto.X509Req()
 req.get_subject().CN = hostname
 if c['secondary']:
 req.add_extensions([crypto.X509Extension(b'subjectAltName'
 value=", ".join("DNS:%s" % d for d in c['secondary'
 req.set_version(2)
 req.set_pubkey(key)
 req.sign(key, "sha256")
 csrdata[c['name']] = crypto.dump_certificate_request(
 crypto.FILETYPE_PEM, req)

Central integration
def main():
 dns = LetsencryptDnsManager()
 curs.execute("""SELECT c.id, primaryname, secondarynames, csr
FROM letsencrypt_certificate c
LEFT JOIN letsencrypt_issuedcertificate ic
ON ic.basecert_id=c.id WHERE csr != ''
GROUP BY c.id HAVING max(issuedat) < now()-'60 days'::interval
OR max(issuedat) IS NULL""")
 leissuers = [LetsencryptIssuer(*r) for r in curs.fetchall()]

 if len(leissuers) == 0: sys.exit(0)

 leclient = LetsencryptClient()

Central integration
Get all possible identifiers (the same one might be used more than once, so make unique)
identifiers = set(chain.from_iterable([i.get_all_identifiers() for i

leclient.get_challenges(identifiers)
remaining = leclient.remaining_challenges()
if remaining:
 for challenge in remaining:
 dns.add_challenge_record(challenge.get_dns_name(), challenge.get_dns_value())

 # Update zone serials and commit
 dns.flush_challenges()

 while True:
 n = dns.check_records()
 if n == 0: break
 time.sleep(30)

Central integration
Trigger letsencrypt to check
for challenge in remaining:
 challenge.answer_challenge()

Wait for all challenges to be confirmed
while True:
 remaining = leclient.remaining_challenges(True)
 if not remaining: break
 time.sleep(30)

for i in leissuers:
 (pemcert, pemchain, expires) = i.issue(leclient)
 curs.execute("INSERT INTO letsencrypt_issuedcertificate"

dns.cleanup()

Certificate deployment
Certificates downloaded on next sync
Written to standard Debian directories

/etc/ssl/certs
/etc/ssl/private

List remembered for plugins

Certificate deployment
Depends on webserver
Already have plugin setups
Note order of certs, keys and chains!
Don't forget to restart!

Certificate deployment
for c in get_public_certificates():
 cf = StringIO()
 cf.write(read_file('/etc/ssl/certs/pginfra_public_{0}.crt'.format(c[
 cf.write(read_file('/etc/ssl/private/pginfra_public_{0}.key'.format(c[
 cf.write(read_file('/etc/ssl/certs/pginfra_public_{0}.chain'.format(c[
 cf.write(read_file('/etc/haproxy/dhparams.pem'))

 replace_file_from_string('/etc/haproxy/certfiles/{0}.combined'.format(c[
 cf.getvalue(),
 'haproxy',
 0600)

Certificate renewal
Same as reissue
No special handling
Separate rate limit

Rate limits
Letsencrypt has rate limits

20 new certs / domain / week
100 names / cert
5 duplicate certs / week
500 registrations / ip / 3 hours
300 pending authorization

We're nowhere near these limits

Conclusions
Much easier than before

Close to 0 work deployment
0 work maintenance and renewal

Better security
No shared keys

Conclusions
Direct work with ACME is easy!
Don't forget to monitor expiry!!

Thank you!
Magnus Hagander

magnus@hagander.net
@magnushagander

http://www.hagander.net/talks/

This material is licensed

