
A PostgreSQL Security Primer

PGDay'15 Russia
St Petersburg, Russia

Magnus Hagander
magnus@hagander.net

PRODUCTS • CONSULTING • APPLICATION MANAGEMENT • IT OPERATIONS • SUPPORT • TRAINING

Magnus Hagander
•PostgreSQL

•Core Team member
•Committer
•PostgreSQL Europe

•Redpill Linpro
•Infrastructure services
•Principal database consultant

Security

Security
•It's hard

Security
•It's hard

•No, really!

Security
•There is no one solution

Security
•There is no one requirement

Security
•PostgreSQL provides a toolbox
•You don't need everything
•Maybe you don't need anything...

Agenda today
•Environment
•Communication
•Authentication
•Application

Agenda today
•Environment
•Communication
•Authentication
•Application

Secure PostgreSQL
Environment

•Only as secure as the environment
•If someone owns the OS, they own the db

•Owns the server -> owns the OS
•Owns the datacenter -> owns the server

•Defined trust levels!
•e.g. outsourcing/cloud vendors

Operating system
•Pick your operating system

•Something you know
•Regardless of PostgreSQL

•Secure "reasonably"
•No other local users!

Operating system
•Use standard installers

•Don't roll your own
•Usually adapted for OS

•E.g. SELinux
•Consistent security!

Operating system
•Keep updated
•Both operating system and PostgreSQL
•yum/apt makes it easier

•But you have to use it!
•Monitor!
•Mind restarts!

Operating system
•Encrypted disks?

•Performance/reliability implications
•Attack vectors?

•Key management?
•What happens on restart?

Multi instance
•Different security domains?
•Different OS user

•Sometimes not well packaged
•Virtualization/containers?

Agenda today
•Environment
•Communication
•Authentication
•Application

Securing communications
•Do you need it?

•Attack vectors?
•Overhead!

Securing communications
•(physical)
•Firewalls
•VPN
•ipsec
•SSL

Firewalls
•PostgreSQL traffic is simple

•Single port TCP
•Block at perimeter
•Block at host

•(Does not replace pg_hba!)

VPN
•Many scenarios

•Site -> Site
•Host -> Site
•Host -> Host

•Typically ipsec or pptp
•Combine with firewall!

IPSEC
•Transport security
•Individual connections
•Allows for detailed policies
•Kernel/system implementation

SSL
•Connection encryption
•Individual connections
•Protocol adapted

SSL in PostgreSQL
•OpenSSL only (sorry)

•Abstraction in 9.5
•No other implementations yet

•Certificate/key
•Like any other service

•Disabled by default on server
•Enabled on client!!

SSL in PostgreSQL
•Negotiated upon connection
•Same port!
•First packets of exchange
•Before authentication etc

Certificates
•Server certificate mandatory
•Does not need public ca

•Probably should not use public ca
•"Snakeoil" self-signed works

•But no MITM protection!
•Use custom (dedicated?) CA!

OpenSSL CA
•OpenSSL comes with built in CA
•Or use other CA software
•Always distribute CA certificate

•But not the key

Setting up certificate
•Generate secret and public key
•Generate certificate request
•Sign :g:`certificate request
•Deploy certificate

Generating OpenSSL cert
$ openssl req -new -newkey rsa:4096 -text -out server.req

•General SSL parameters apply
•Use large enough keys!
•Always set CN to server name
•Other attributes ignored

Generating OpenSSL cert
•OpenSSL always secures key with passphrase
•Makes auto-start impossible
•Remove key:

$ openssl rsa -in privkey.pem -out server.key
$ rm privkey.pem

Generating OpenSSL cert
•Securely store server.key
•Transfer server.req to CA

•Does not have to be secured
•If you verify fingerprint!

Sign certificate request
•Use your CA

•For example, OpenSSL built-in one
•Or generate self-signed:

$ openssl req -x509 -in server.req -text -key server.key -out server.crt

•Securely transfer server.crt

Distribute CA certificate
•Each client needs cert to verify CA
•Not required, but strongly recommended

•~/.postgresql/root.crt
•Also distribute CRL if used

•~/.postgresql/root.crl
•Connection string can override file names

Enable server SSL
•Set ssl=on
•server.key/server.crt in data directory

•Check permissions!
•Should be 0600, must be 0x00.

•Restart, done.

CA Certificate on server
•Required for client certificate auth

•root.crt
•CRL not required but recommended

•root.crl
•File names controllable in postgresql.conf

SSL negotiation
•SSL negotiated between client and server
•Server provides
•Client decides
•Controlled by sslmode parameter

SSL negotiation
•sslmode default is prefer

•This is stupid....
•No guarantees
•Don't use!

SSL negotiation

SSL enforcement
•Client decides??!!?!?!

•Huh??
•Client decides, but server can reject
•Using hostssl in pg_hba.conf

SSL enforcement
..
hostssl xxx yyy ...
..

•Always use!

Client certificates
•Not required by default
•Can be requested by server

•clientcert=1 in pg_hba.conf
..
hostssl xxx yyy zzz abc clientcert=1
..

Client certificates
•Provide in PEM format file

•Or through OpenSSL compatible engine
•Validated against root CA on server

•PostgreSQL specific root
•By default just needs to exist

Client certificate
authentication

•Use for full login
•Username extracted from CN attribute
•Must chain to known trusted CA
•Can map using pg_ident.conf

Agenda today
•Environment
•Communication
•Authentication
•Application

Authentication
•Make sure it's the correct user
•And that they can prove it

Authentication
•PostgreSQL supports many methods

•Host Based Authentication
•Combined in the same installation!
•Don't just "dumb down"

pg_hba.conf
•Top-bottom file
•Filter by:

•Connection type
•User
•Database
•Connection source

•"Firewall" and authentication choice

pg_hba.conf
•Order by most specific:

local all all peer
host all all 127.0.0.1/32 md5
hostnossl webdb webuser 10.1.1.0/30 md5
hostssl all +admin 192.168.0.0/24 gss

•Implicit reject at end

Authentication methods
•Many choices

•Internal
•OS integrated
•Fully external

•And some really bad ones...

trust
•Trust everybody everywhere

•Why would anybody claim they're someone else?
•"Turn off all security"
•Any use case? Maybe one...

trust
•Use it? Change it!

peer
•Only over Unix sockets

•Sorry Windows, sorry Java
•Local connections only
•Asks OS kernel

•Trustworthy!

md5
•Simplest one?
•Username/password
•Double MD5-hash
•Do not use "password"

ldap
•Looks like password to client

•Regular prompt
•Passed over to LDAP server
•No special support needed

•Construct URLs different ways
•Prefix+suffix
•Search+bind

ldap
•Suffix and prefix
ldapprefix="CN=" ldapsuffix=", DC=domain, DC=com"

•Binds to
CN=mha, DC=domain, DC=com

ldap
•Double binding
ldapbasedn="DC=domain, DC=com"
 ldappbinddn="CN=postgres, DC=domain, DC=com"
 ldapbindpasswd="supersecret"
 ldapsearchattribute="uid"

ldap
•Double binding URL syntax
ldapurl="ldap://1.2.3.4/dc=domain, dc=com?uid?sub"
 ldappbinddn="CN=postgres, DC=domain, DC=com"
 ldapbindpasswd="supersecret"

ldap
•Cleartext!

•Use with ldaptls=1
•Use with hostssl

•Password policies from LDAP server
•Only authentication!

gss
•Kerberos based GSSAPI

•Including Active Directory
•Single Sign-On

•No password prompt!
•All Kerberos supported auth methods

•Secure tickets
•"krb5" deprecated/removed

gss
•Uses kerberos keytabs
•Uses principals and realms

•Similar to users and domains
•Mutual authentication
•Default service principal

•postgres/server.domain.com
•Case sensitive!

gss
•Install keytab

•Readable by PostgreSQL
•Can be specific for PostgreSQL or shared
•Any principal will be accepted
•But must match client!

gss
•Client principals

•user@domain.com
•Matched with or without realms

•Recommendation is to always include
•Strip with pg_ident.conf

gss
gss include_realm=1 map=gss

•can also restrict realms
gss include_realm=1 krb_realm=DOMAIN.COM

radius
•Looks like password to client

•Use with hostssl!
•Shared-secret encryption to Radius server
•Common for OTP solutions

radius
radiusserver=1.2.3.4
 radiussecret=supersecret

cert
•Map client certificate to login

•Uses CN attribute
•Any certificate "engine" supported by OpenSSL

•Normally uses PEM encoded files

cert
•Server must have CA certificate

•And CRL if used
•Client must have CA certificate

•And CRL if used

User name mapping
•External systems with different usernames

•Peer
•gss/sspi
•cert

•Allow static or pattern mapping

User name mapping
•pg_hba.conf:
local all all peer map=local
hostssl all all 10.0.0/24 gss map=gss includerealm=1
hostssl all all 0.0.0.0/0 cert map=cert

User name mapping
•pg_ident.conf:

local root postgres
..
gss /^(.*)@DOMAIN.COM$/ \1
..
cert /^cn=(.*)$/ \1

Agenda today
•Environment
•Communication
•Authentication
•Application
•Summary

Application security
•Huge topic
•Let's stick to a few tips...
•And an example or two

Superuser
•Never use superuser
•Disables all security

•Allows arbitrary code execution!
•Allows replacement of configuration!

Database owner
•Avoid using database owner
•Overrides any object permissions

•But much better than superuser

Schema boundaries
•Schemas for compartmentalization
•USAGE required to access all objects
•Object permissions required as well
•Sub-divide access

Password management
•Specifically considering webapps
•Lots of data collected today

•Username
•Password
•Email

•and more

And then what happens?
•What typically happens?

And then what happens?
•You get hacked

•Seems to only be a matter of time
•So plan for that!

So what do we do?
•Didn't we already solve this?
•Passwords are hashed!

•We've even got extra advanced methods!

People still get hacked
•Hashed passwords prevent some hacks
•But "dumping" those still allow offline attacks
•Leaked email addresses are valuable

•Valuable makes it a target

So what can we do?
•We can easily improve on this
•There is no reason for bulk downloads
•Your database can help
•So let's look at a typical webapp

The valuable users table
CREATE TABLE users (
 userid text,
 pwdhash text,
 email text
)

The SQL injection attack
•Lets the attacker do:
SELECT * FROM users
•And they get all data...

•Hashed passwords for offline attacks
•Email addresses for sale

Remind you of anything?
•Haven't we seen this before?

Remind you of anything?
•Haven't we seen this before?

•Like pre-1990?

Remind you of anything?
•Haven't we seen this before?

•Pre-1990
•/etc/passwd

Remind you of anything?
•Shadow passwords!!

•Invented a long time ago (1988, SysV 3.2 - Linux
1992)

•Why are we repeating the mistakes?

Shadow passwords in PG
•Shadow passwords are based on "views"

•We have this in PostgreSQL
•Shadow passwords requires "suid"

•We have this in PostgreSQL

Shadow passwords in PG
•The problem:
webapp=# SELECT * FROM users;
 userid | pwdhash | email
--------+--+---------------------
 mha | $2a$06$1dtSqWdv0hfsbpDRsfZ9eOHlGoLUj... | magnus@hagander.net

Shadow passwords in PG
webapp=# ALTER TABLE users RENAME TO shadow;
ALTER TABLE
webapp=# REVOKE ALL ON shadow FROM webuser;
REVOKE

Shadow passwords in PG
webapp=# CREATE VIEW users AS
webapp-# SELECT userid, NULL::text AS pwdhash, NULL::text as email
webapp-# FROM shadow;
CREATE VIEW
webapp=# GRANT SELECT ON users TO webuser;
GRANT

Shadow passwords in PG
webapp=> SELECT * FROM shadow;
ERROR: permission denied for relation shadow
webapp=> SELECT * FROM users;
 userid | pwdhash | email
--------+---------+-------
 mha | |

Shadow passwords in PG
•But now it's useless...
•No way to log in

Shadow passwords in PG
webapp=# CREATE EXTENSION pgcrypto;
CREATE EXTENSION

pgcypto password hashing
•pgcrypto provides crypt()
•Dual-use function
•Create password hashes (salted, of course!)
•Validate password hashes

SECURITY DEFINER
•Functions with SECURITY DEFINER
•Acts like setuid binary
•Powerful access

SECURITY DEFINER
CREATE OR REPLACE FUNCTION login(_userid text,
 _pwd text, OUT _email text)
 RETURNS text
 LANGUAGE plpgsql
 SECURITY DEFINER
AS $$
BEGIN
 SELECT email INTO _email FROM shadow
 WHERE shadow.userid=lower(_userid)
 AND pwdhash = crypt(_pwd, shadow.pwdhash);
END;$$

SECURITY DEFINER
webapp=> SELECT * FROM login('mha', 'foobar');
 _email

(1 row)
webapp=> SELECT * FROM login('mha', 'topsecret');
 _email

 magnus@hagander.net

SECURITY DEFINER
•Beware!!

•SQL-in-SQL injections
•Unbounded data access

•Never use superuser

Agenda today
•Environment
•Communication
•Authentication
•Application
•Summary

Security
•Determine your requirements
•Determine your trust levels
•Determine your attack surface
•Determine your threat vectors

Security
•Deploy correct countermeasures

•"Checkbox featuring" is useless
•Or even counterproductive

•Lock all doors
•E.g. why encrypt disks if keys are local?
•Why require smartcards if data is cleartext?

Layered security
•A firewall alone doesn't protect you
•Doesn't mean you shouldn't have one

Too simple to mention
•Never use trust

•(not even in testing)
•Use pg_hba.conf

•Mix auth methods
•Restrict IP addresses

•Go SSL if you have to

Iterative process
•Re-evaluate
•Requirements and landscape are dynamic!
•Stay secure!

Thank you!
Magnus Hagander

magnus@hagander.net
@magnushagander

http://www.hagander.net/talks/

This material is licensed CC BY-NC 4.0.

http://www.hagander.net/talks/

	Magnus Hagander
	Security
	Security
	Security
	Security
	Security
	Security
	Agenda today
	Agenda today
	Secure PostgreSQL Environment
	Operating system
	Operating system
	Operating system
	Operating system
	Multi instance
	Agenda today
	Securing communications
	Securing communications
	Firewalls
	VPN
	IPSEC
	SSL
	SSL in PostgreSQL
	SSL in PostgreSQL
	Certificates
	OpenSSL CA
	Setting up certificate
	Generating OpenSSL cert
	Generating OpenSSL cert
	Generating OpenSSL cert
	Sign certificate request
	Distribute CA certificate
	Enable server SSL
	CA Certificate on server
	SSL negotiation
	SSL negotiation
	SSL negotiation
	SSL enforcement
	SSL enforcement
	Client certificates
	Client certificates
	Client certificate authentication
	Agenda today
	Authentication
	Authentication
	pg_hba.conf
	pg_hba.conf
	Authentication methods
	trust
	trust
	peer
	md5
	ldap
	ldap
	ldap
	ldap
	ldap
	gss
	gss
	gss
	gss
	gss
	radius
	radius
	cert
	cert
	User name mapping
	User name mapping
	User name mapping
	Agenda today
	Application security
	Superuser
	Database owner
	Schema boundaries
	Password management
	And then what happens?
	And then what happens?
	So what do we do?
	People still get hacked
	So what can we do?
	The valuable users table
	The SQL injection attack
	Remind you of anything?
	Remind you of anything?
	Remind you of anything?
	Remind you of anything?
	Shadow passwords in PG
	Shadow passwords in PG
	Shadow passwords in PG
	Shadow passwords in PG
	Shadow passwords in PG
	Shadow passwords in PG
	Shadow passwords in PG
	pgcypto password hashing
	SECURITY DEFINER
	SECURITY DEFINER
	SECURITY DEFINER
	SECURITY DEFINER
	Agenda today
	Security
	Security
	Layered security
	Too simple to mention
	Iterative process

