
Securing web based apps in PostgreSQL

TechDay by Init, 2014
Stockholm, Sweden

Magnus Hagander
magnus@hagander.net

PRODUCTS • CONSULTING • APPLICATION MANAGEMENT • IT OPERATIONS • SUPPORT • TRAINING

Magnus Hagander
•Redpill Linpro

•Infrastructure services
•Principal database consultant

•PostgreSQL
•Core Team member
•Committer
•PostgreSQL Europe

So what's this about
•Web based apps

•You may have heard of them?
•Most use a database

•I'll use PostgreSQL
•Basic theories are generic

Defense in depth
•We've all heard about it

Defense in depth
•We've all heard about it
•And we all practice it

Defense in depth
•We've all heard about it
•And we all practice it

•Right?

Defense in depth
•All web-servers run as root

•Because why not?
•No need to set permissions!

Defense in depth
•Then why do it to your database?

Defense in depth
•Don't ever use superuser!
•Don't use database owner
•Use access control!

Don't use superuser
•Bypasses all security controls
•Run arbitrary code!

•If uploaded first
•But can upload arbitrary files...

Don't use database owner
•Can bypass data access control
•Better than superuser
•But not good enough!

Use access control
•Are all you files mode 0777?

Restrict at the edge
•Use that silly firewall
•Still not very selective

Host Based Authentication
•Control who can do what, when and how
•Also limits exposure once hacked

•Always assume it will happen

Host Based Authentication
•Use secure authentication

•For high privilege accounts
•Passwords are so 1970ies!

Host Based Authentication
•Very granular control
•10+ authentication methods

•Incl. SSL certs, Kerberos etc
•Let's stick to an example

Host Based Authentication
local all all peer
host all all 127.0.0.1/32 md5
hostnossl webdb webuser 10.1.1.0/30 md5
hostssl all +admin 192.168.0.0/24 gss

Recap
•Don't bypass security!
•Protect high privilege accounts
•Limit attack surfaces

Let's talk about data
•We collect more and more data
•Let's focus on what everybody collects

•Which is valuable enough

Typical webapp
•Collects mandatory information:

•Username
•Password
•Email

And then what happens?
•What typically happens?

And then what happens?
•You get hacked

•Seems to only be a matter of time
•So plan for that!

So what do we do?
•Didn't we already solve this?
•Passwords are hashed!

•We've even got extra advanced methods!

People still get hacked
•Hashed passwords prevent some hacks
•But "dumping" those still allow offline attacks
•Leaked email addresses are valuable

•Valuable makes it a target

So what can we do?
•We can easily improve on this
•There is no reason for bulk downloads
•Your database can help
•So let's look at a typical webapp

The valuable users table
CREATE TABLE users (
 userid text,
 pwdhash text,
 email text
)

The SQL injection attack
•Lets the attacker do:
SELECT * FROM users
•And they get all data...

•Hashed passwords for offline attacks
•Email addresses for sale

Remind you of anything?
•Haven't we seen this before?

Remind you anything?
•Haven't we seen this before?

•Like pre-1990?

Remind you anything?
•Haven't we seen this before?

•Pre-1990
•/etc/passwd

Remind you anything?
•Shadow passwords!!

•Invented a long time ago (1988, SysV 3.2 - Linux
1992)

•Why are we repeating the mistakes?

Shadow passwords in PG
•Shadow passwords are based on "views"

•We have this in PostgreSQL
•Shadow passwords requires "suid"

•We have this in PostgreSQL

Shadow passwords in PG
•The problem:
webapp=# SELECT * FROM users;
 userid | pwdhash | email
--------+--+---------------------
 mha | $2a$06$1dtSqWdv0hfsbpDRsfZ9eOHlGoLUj... | magnus@hagander.net

Shadow passwords in PG
webapp=# ALTER TABLE users RENAME TO shadow;
ALTER TABLE
webapp=# REVOKE ALL ON shadow FROM webuser;
REVOKE

Shadow passwords in PG
webapp=# CREATE VIEW users AS
webapp-# SELECT userid, NULL::text AS pwdhash, NULL::text as email
webapp-# FROM shadow;
CREATE VIEW
webapp=# GRANT SELECT ON users TO webuser;
GRANT

Shadow passwords in PG
webapp=> SELECT * FROM shadow;
ERROR: permission denied for relation shadow
webapp=> SELECT * FROM users;
 userid | pwdhash | email
--------+---------+-------
 mha | |

Shadow passwords in PG
•But now it's useless...
•No way to log in

Shadow passwords in PG
webapp=# CREATE EXTENSION pgcrypto;
CREATE EXTENSION

pgcypto password hashing
•pgcrypto provides crypt()
•Dual-use function
•Create password hashes (salted, of course!)
•Validate password hashes

Shadow passwords in PG
webapp=# SELECT pgcrypto.crypt('topsecret', pgcrypto.gen_salt('bf'));
 crypt
--
 $2a$06$Hc6hihEQ0mo/ZO39u2kQG.M2Bx4Zbgo8o.z41K74OJ2YCpK2GP8Vu
(1 row)

webapp=# SELECT pgcrypto.crypt('topsecret', pgcrypto.gen_salt('bf'));
 crypt
--
 $2a$06$y5ofH0Pe1t1INfZJ50u2rebVC0yQm0MnGAMlhdnZi3ZzRgUKIcfim
(1 row)

Shadow passwords in PG
CREATE OR REPLACE FUNCTION login(_userid text,
 _pwd text, OUT _email text)
 RETURNS text
 LANGUAGE plpgsql
 SECURITY DEFINER
AS $$
BEGIN
 SELECT email INTO _email FROM shadow
 WHERE shadow.userid=lower(_userid)
 AND pwdhash = crypt(_pwd, pwdhash);
END;$$

Shadow passwords in PG
webapp=> SELECT * FROM login('mha', 'foobar');
 _email

(1 row)
webapp=> SELECT * FROM login('mha', 'topsecret');
 _email

 magnus@hagander.net

Shadow passwords in PG
CREATE OR REPLACE FUNCTION set_password(_userid text, _pwd text)
RETURNS void LANGUAGE plpgsql
SECURITY DEFINER
AS $$
BEGIN
 UPDATE shadow SET pwdhash = crypt(_pwd, gen_salt('bf'))
 WHERE shadow.userid=lower(_userid);
END;
$$

Problems solved
•No bulk information leak
•Can only get information after you have the passwood

•But then you presumably have it already
•Protect selected attributes
•While maintaining database modeling properties

Problems created
•SECURITY DEFINER functions are a point of attack
•Be careful writing them

•SQL injection inside SQL...

Thank you!
Magnus Hagander

magnus@hagander.net
@magnushagander

This material is licensed CC BY-NC 4.0.

	Magnus Hagander
	So what's this about
	Defense in depth
	Defense in depth
	Defense in depth
	Defense in depth
	Defense in depth
	Defense in depth
	Don't use superuser
	Don't use database owner
	Use access control
	Restrict at the edge
	Host Based Authentication
	Host Based Authentication
	Host Based Authentication
	Host Based Authentication
	Recap
	Let's talk about data
	Typical webapp
	And then what happens?
	And then what happens?
	So what do we do?
	People still get hacked
	So what can we do?
	The valuable users table
	The SQL injection attack
	Remind you of anything?
	Remind you anything?
	Remind you anything?
	Remind you anything?
	Shadow passwords in PG
	Shadow passwords in PG
	Shadow passwords in PG
	Shadow passwords in PG
	Shadow passwords in PG
	Shadow passwords in PG
	Shadow passwords in PG
	pgcypto password hashing
	Shadow passwords in PG
	Shadow passwords in PG
	Shadow passwords in PG
	Shadow passwords in PG
	Problems solved
	Problems created

