PostgreNoSQL

OpenSource Days 2013
Copenhagen, Denmark

Magnus Hagander
magnus@hagander.net

PRODUCTS « CONSULTING - APPLICATION MANAGEMENT - IT OPERATIONS - SUPPORT - TRAINING

Magnus Hagander

PostgreSQL

Core Team member
Committer
PostgreSQL Europe

Redpill Linpro
Infrastructure services
Principal database consultant

PostgreSQL

Relational database
"Old world"
Nobody wants SQL?

Nobody wants SQL

Really?

What do people actually
dislike?

SQL

Or relational

Or "ACID guarantees”
or...?

What can we do

We can't take away SQL
But we can minimize use of it
Still very useful for many things

Even in typical NoSQL scenarios

ACID guarantees

By default, PostgreSQL guarantees everything
Turning off fsync risks your data

Almost guaranteed data corruption
Hard to detect, even harder to fix

Almost-ACID

Instead, use synchronous commit=off

Guarantees data integrity
Guarantees data consistency
But may loose small amounts of durability

Eventual consistency

Often used for write scaling
Don't really care about data consistency
We don't do this at this point

There are people experimenting...

Relational model

Tables and relations

And scary joins!
Does not always match application model

Though more often than you think
Something we can work with

Potential 1ssues with
relational

Relational model has columns

Need to know which
Very sparse data sets are bad
Anti-solution: EAV

Please don't go there

Dealing with
non-relational

key/value store
General schemaless data

Put all requirements on application
Mix and match!

hstore

Generic key-value store

Fully indexable!

Typeless

Available in all supported versions

Installing hstore

CREATE EXTENSION hstore;

CREATE EXTENSION

Defining hstore columns

CREATE TABLE items (
itemid serial NOT NULL PRIMARY KEY,

1temname text NOT NULL,
tags hstore);
CREATE TABLE

Creating hstore values

INSERT INTO 1items (itemname, tags)

VALUES (
INSERT 0 1

Query by hstore

SELECT itemname FROM 1items

WHERE tags

Indexed access

Create normal expression index on column
CREATE INDEX foo ON

((1tems))

Requires one index per key
That's what we wanted to avoid...

Dynamic GiST 1indexing

Create index covering all keys
CREATE INDEX hstoreidx

ON 1tems
USING gist(tags)

Available for multiple operators

All types of containment
Must use these operators

Querying with GiST

EXPLAIN
SELECT itemname FROM items
WHERE tags ;

Index Scan using hstoreidx on items (cost=0.12..8.14 rows=1 width=32)
Index Cond: (tags @> '"color"=>"red"'::hstore)

Querying for tag presence

EXPLAIN
SELECT itemname FROM items
WHERE tags -

Index Scan using hstoreidx on items (cost=0.12..8.14 rows=1 width=32)
Index Cond: (tags ? 'color'::text)

Downsides of hstore

Values are not typed

Just strings
No hierarchy
No key compression
Still slower than "normal columns”

But very useful with sparse data!

Fully schemaless

"Document storage”
And of course, processing
"Everybody uses |]SON"

Yup, they stopped using XML!

JSON

JavaScript Object Notation
Text-based data

Schemaless
Hierarchical

PostgreSQL has native support (since 9.2)!

JSON 1n PostgreSQL

CREATE TABLE jsontable (
id serial PRIMARY KEY,
] json

) ;

Storing JSON

INSERT INTO jsontable (j) VALUES (

);
INSERT 0 1

Validates json syntax
Maintains formatting

Mapping JSON

SELECT row to json(schedule)
FROM schedule WHERE 1d=1;

{"1d":1,"employee 1d":1,"t":"[\"2013-02-08 13:00:00+00\",
| "2013-02-08 17:00:00+00\")"}

Mapping JSON

SELECT row to json(schedule)
FROM schedule WHERE 1d=1;
{"id":1,"employee id":1,"t":"[\1"2013-02-08 13:00:00+00\",
| "2013-02-08 17:00:00+00\")"}

SELECT row to json(t) FROM (
SELECT 1d, employee id
FROM schedule) t;
{"1d":2,"employee 1d":1}
{"1d":3,"employee 1d":2}
{"1d":1,"employee 1d":1}

Using JSON

That's really all there is to JSON

At least in 9.2
For full power, use with pl/v8

PL/V8

Combines PostgreSQL and V8
Outside extension

CREATE EXTENSION plvS;

CREATE EXTENSION

JSON extraction

CREATE or replace FUNCTION jmember (j json, key text)
RETURNS text LANGUAGE plv8 IMMUTABLE
AS $function$

if (typeof j)
return NULL:;
return JSON.stringify(jl[key]);
$function$;

JSON extraction

SELECT jmember(j,
FROM jsontable;

"Magnus Hagander"

JSON 1ndexing

CREATE INDEX 1dx nameid

ON jsontable (jmember(j,));
CREATE INDEX

JSON 1ndexing

EXPLAIN
SELECT * FROM jsontable
WHERE jmember(j,) ;

Index Scan using idx nameid on jsontable (cost=0.38..8.39 rows=1 width=36)
Index Cond: (jmember(j, 'id'::text) = 'mha'::text)

JSON 1ndexing

Still need one index per key
Can use arbitrary expression

Including processing hierarchical data
Can transform key on lookup as well

Javascript functions

Uses "javascript way"
E.g., subtransactions by:

CREATE OR REPLACE FUNCTION public.st()
RETURNS void LANGUAGE plvS8

AS $function$
plv8.subtransaction(function() {

plv8.execute(
plv8.execute(

)i

$function$

JSON/JS future 1n
PostgreSQL

More built-in operators for JSON
Likely showing up in 9.3
Extraction etc
No current plans to include PL/V8 in core

C++, etc
But we like extensions!

JSON/JS future 1n
PostgreSQL

Generic JSON indexing
With hierarchy support
No code yet

Plans are in progress

Not in 9.3, but maybe 9.4

Thank you!

Magnus Hagander
magnus@hagander.net
@magnushagander

	Magnus Hagander
	PostgreSQL
	Nobody wants SQL
	What do people actually dislike?
	What can we do
	ACID guarantees
	Almost-ACID
	Eventual consistency
	Relational model
	Potential issues with relational
	Dealing with non-relational
	hstore
	Installing hstore
	Defining hstore columns
	Creating hstore values
	Query by hstore
	Indexed access
	Dynamic GiST indexing
	Querying with GiST
	Querying for tag presence
	Downsides of hstore
	Fully schemaless
	JSON
	JSON in PostgreSQL
	Storing JSON
	Mapping JSON
	Mapping JSON
	Using JSON
	PL/V8
	JSON extraction
	JSON extraction
	JSON indexing
	JSON indexing
	JSON indexing
	Javascript functions
	JSON/JS future in PostgreSQL
	JSON/JS future in PostgreSQL

