
Exploring PostgreSQL Datatypes

OpenSource Days 2013
Copenhagen, Denmark

Magnus Hagander
magnus@hagander.net

PRODUCTS • CONSULTING • APPLICATION MANAGEMENT • IT OPERATIONS • SUPPORT • TRAINING

Magnus Hagander
•PostgreSQL

•Core Team member
•Committer
•PostgreSQL Europe

•Redpill Linpro
•Infrastructure services
•Principal database consultant

PostgreSQL
•"The Worlds Most Advanced Open Source Database"
•RDBMS
•Lots of features
•Designed to use those features

PostgreSQL datatypes
•Pluggable type system
•Everything is a type!

•>300 types by default
•Table is type

Standard datatypes
•A few quick notes

•text vs varchar
•prefer int4/int8, not numeric

•But that's not why we're here

Advanced datatypes
•Plenty to choose from
•Internal and external

•e.g. PostGIS

Advanced datatypes
•Date & time
•Range types
•json & hstore

Date & time
•Please don't use seconds-since-1970
•Instead use

•timestamp with time zone
•date
•time

Timestamp with time zone
•Should be your go-to datatype for timestamps
•Does not mean it stores the timezone!
•Means it considers the timezone
CREATE TABLE tbl(t timestamp with time zone)

Timestamp with time zone
postgres=# SELECT t FROM tbl;
 2013-03-30 17:45:15+01

postgres=# SET timezone='America/Montreal';
SET

postgres=# SELECT t FROM tbl;
 2013-03-30 12:45:15-04

Timestamp with time zone
postgres=# SELECT t AT TIME ZONE 'Asia/Tokyo'
postgres-# FROM tbl;
 2013-03-31 01:45:15

Timestamp math
postgres=# SELECT t + '3 hours' FROM tbl;
 2013-03-30 20:45:15+01

postgres=# SELECT t - now() FROM tbl;
 50 days 04:13:17.575963

Timestamp math vs timezone
postgres=# SELECT t + '10 hours' FROM tbl;
 2013-03-31 04:45:15+02

Getting the pieces out
postgres=# SELECT extract('year' FROM t) FROM tbl;
 2013

postgres=# SELECT extract('epoch' FROM t) FROM tbl;
 1364661915

Associated datatypes
•Use date for dates

•Don't use timestamp and set time to zeroes!
•Use time for times

•When you have no date, don't make one up!

Advanced datatypes
•That's pretty standard

•"Everybody" has it
•It just happens to be more convenient

•Let's look at some really cool stuff

Range types
•Store any type of range data
•Builtin and custom

•integers and numerics
•timestamps and dates

•Inclusive or exclusive
•Discrete or continuous

Range types - why?
•Simplify queries
•Advanced operators
•Indexes
•Constraints

Range-type simple example
•"On call schedule"
•Let's assume we have employees

•Identified by employee_id
•Someone needs to be on call
•When there is a problem, find who's on call right now

Before range types
CREATE TABLE schedule (
 id serial PRIMARY KEY,
 employee_id integer,
 starttime timestamp with time zone,
 endtime timestamp with time zone
);

Who's on call?
postgres=# SELECT employee_id FROM schedule WHERE
postgres-# now() BETWEEN starttime AND endtime;
 1

•Ok, that was easy
•What about can I schedule X tomorrow between 16
and 17

Is X free?
SELECT count(*) FROM schedule
WHERE
 employee_id = 1 AND (
 (
 starttime >= '2013-02-09 16:00' AND
 starttime <= '2013-02-09 17:00'
) OR (
 endtime >= '2013-02-09 16:00' AND
 endtime <= '2013-02-09 17:00'
)
)

Is X free?
•That's not enough...

•Contained
•Completely covering
•Start before, end in or after
•Start in, end before or after

•Finding overlaps is complicated
•Gets worse with more factors

Range types!
•tstzrange = range type of timestamptz
CREATE TABLE schedule (
 id serial PRIMARY KEY,
 employee_id integer,
 t tstzrange
);

Who's on call?
postgres=# SELECT employee_id FROM schedule_old WHERE
postgres-# now() BETWEEN starttime AND endtime;
 1

postgres=# SELECT employee_id FROM schedule WHERE
postgres-# t @> now();
 1

Is X free?
postgres=# SELECT count(*) FROM schedule WHERE employee_id=1 AND
postgres-# t && '[2013-02-09 16:00, 2013-02-09 17:00]'::tstzrange;
 1

Is X free?
postgres=# SELECT count(*) FROM schedule WHERE employee_id=1 AND
postgres-# t && '[2013-02-09 16:00, 2013-02-09 17:00]'::tstzrange;
 1

postgres=# SELECT count(*) FROM schedule WHERE employee_id=1 AND
postgres-# t && '[2013-02-09 17:00, 2013-02-09 18:00]'::tstzrange;
 1

Is X free?
postgres=# SELECT count(*) FROM schedule WHERE employee_id=1 AND
postgres-# t && '[2013-02-09 16:00, 2013-02-09 17:00]'::tstzrange;
 1

postgres=# SELECT count(*) FROM schedule WHERE employee_id=1 AND
postgres-# t && '[2013-02-09 17:00, 2013-02-09 18:00]'::tstzrange;
 1

postgres=# SELECT count(*) FROM schedule WHERE employee_id=1 AND
postgres-# t && '(2013-02-09 17:00, 2013-02-09 18:00]'::tstzrange;
 0

Range definitions
•(and) indicates exclusive range
•[and] indicates inclusive range
•Leave out to make infinite, e.g.

•'(2,)'::int4range
•'[now,]'::tstzrange

Discrete and continuous
•Discrete ranges "have next and prev", e.g.
postgres=# SELECT '(2,5)'::int4range;
 [3,5)

postgres=# select int4range(2,5,'()');
 [3,5)

•Continuous ranges don't, e.g.
postgres=# SELECT '(2,5)'::numrange;
 (2,5)

Indexing
•Fully supported by GiST indexes
postgres=# CREATE INDEX schedule_t_idx ON schedule USING gist (t);
CREATE INDEX

•Supports operators for:
•Equals (=)
•Overlaps (&&)
•Containment (<@, @>)
•Adjacent (-|-)
•Does-not-extend-to-side-of (<&, &>)

Constraints
•Exclusion constraints supported

•"Generalized UNIQUE"
postgres=# ALTER TABLE schedule ADD CONSTRAINT duplicate_booking
postgres-# EXCLUDE USING gist (t WITH &&);
ALTER TABLE

postgres=# INSERT INTO schedule (employee_id, t) VALUES
postgres-# (1, '[2013-02-08 13:30,2013-02-08 14:00]');
ERROR: conflicting key value violates exclusion
 constraint "duplicate_booking"
DETAIL: Key (t)=(["2013-02-08 13:30:00+00","2013-02-08 14:00:00+00"])
 conflicts with existing key (t)=(["2013-02-08 13:00:00+00",
 "2013-02-08 17:00:00+00")).

Moving on
•Range types fit the traditional model

•Basic RDBMS ideas
•What about non-relational?

•Supposedly the future?
•Combine with relational!

JSON
•JavaScript Object Notation
•Text-based data
•Schemaless
•Hierarchical
•PostgreSQL has native support (since 9.2)!

JSON in PostgreSQL
CREATE TABLE jsontable (
 id serial PRIMARY KEY,
 j json
);

Storing JSON
postgres=# INSERT INTO jsontable (j) VALUES ('{
postgres'# "id":"mha",
postgres'# "name":"Magnus Hagander",
postgres'# "country": "Sweden"
postgres'# }');
INSERT 0 1

•Validates json syntax
•Maintains formatting

Mapping JSON
postgres=# SELECT row_to_json(schedule)
postgres-# FROM schedule WHERE id=1;
 {"id":1,"employee_id":1,"t":"[\"2013-02-08 13:00:00+00\",
 \"2013-02-08 17:00:00+00\")"}

Mapping JSON
postgres=# SELECT row_to_json(schedule)
postgres-# FROM schedule WHERE id=1;
 {"id":1,"employee_id":1,"t":"[\"2013-02-08 13:00:00+00\",
 \"2013-02-08 17:00:00+00\")"}

postgres=# SELECT row_to_json(t) FROM (
postgres-# SELECT id, employee_id
postgres-# FROM schedule) t;
 {"id":2,"employee_id":1}
 {"id":3,"employee_id":2}
 {"id":1,"employee_id":1}

Using JSON
•That's really all there is to JSON

•At least in 9.2
•For full power, use with pl/v8

•Extraction and combination
•Indexing (using expression indexes)
•Much more

More nonrelational
•Why have only one, when you can have two?

hstore
•Generic key-value store
•Fully indexable!
•Typeless
•No nesting

Installing hstore
postgres=# CREATE EXTENSION hstore;
CREATE EXTENSION

Defining hstore columns
postgres=# CREATE TABLE items (
postgres(# itemid serial NOT NULL PRIMARY KEY,
postgres(# itemname text NOT NULL,
postgres(# tags hstore);
CREATE TABLE

Creating hstore values
postgres=# INSERT INTO items (itemname, tags)
postgres-# VALUES ('item1', 'color => red, category => stuff');
INSERT 0 1

Query by hstore
postgres=# SELECT itemname FROM items
postgres-# WHERE tags->'color' = 'red';
 item1

Indexed access
•Create normal expression index on column
CREATE INDEX foo ON
 ((items->'color'))
•Requires one index per key
•That's what we wanted to avoid...

Dynamic GiST indexing
•Create index covering all keys
CREATE INDEX hstoreidx
 ON items
 USING gist(tags)
•Available for multiple operators

•All types of containment
•Must use these operators

Querying with GiST
postgres=# EXPLAIN
postgres-# SELECT itemname FROM items
postgres-# WHERE tags @> 'color=>red';

 Index Scan using hstoreidx on items (cost=0.12..8.14 rows=1 width=32)
 Index Cond: (tags @> '"color"=>"red"'::hstore)

Querying for tag presence
postgres=# EXPLAIN
postgres-# SELECT itemname FROM items
postgres-# WHERE tags ? 'color';

 Index Scan using hstoreidx on items (cost=0.12..8.14 rows=1 width=32)
 Index Cond: (tags ? 'color'::text)

Downsides of hstore
•Values are not typed

•Just strings
•No hierarchy
•No key compression
•Still slower than "normal columns"

•But very useful with sparse data!

Can I have both?
•You'd really want both
•Hierarchical hstore with full indexing
•With a nice JSON API
•Not yet...

Thank you!
Magnus Hagander

magnus@hagander.net
@magnushagander

	Magnus Hagander
	PostgreSQL
	PostgreSQL datatypes
	Standard datatypes
	Advanced datatypes
	Advanced datatypes
	Date & time
	Timestamp with time zone
	Timestamp with time zone
	Timestamp with time zone
	Timestamp math
	Timestamp math vs timezone
	Getting the pieces out
	Associated datatypes
	Advanced datatypes
	Range types
	Range types - why?
	Range-type simple example
	Before range types
	Who's on call?
	Is X free?
	Is X free?
	Range types!
	Who's on call?
	Is X free?
	Is X free?
	Is X free?
	Range definitions
	Discrete and continuous
	Indexing
	Constraints
	Moving on
	JSON
	JSON in PostgreSQL
	Storing JSON
	Mapping JSON
	Mapping JSON
	Using JSON
	More nonrelational
	hstore
	Installing hstore
	Defining hstore columns
	Creating hstore values
	Query by hstore
	Indexed access
	Dynamic GiST indexing
	Querying with GiST
	Querying for tag presence
	Downsides of hstore
	Can I have both?

