
A look at the Elephants Trunk

PostgreSQL 10
PGDay UK

London, UK

Magnus Hagander
magnus@hagander.net

Magnus Hagander
Redpill Linpro

Principal database consultant
PostgreSQL

Core Team member
Committer
PostgreSQL Europe

PostgreSQL 10

A new era of versioning

Versioning
...
8.4
9.0
...
9.4
9.5
9.6

Versioning
9.6

9.6.2
10

10.1
11
12

Development schedule
August 2016 - branch 9.6
September 2016 - CF1
November 2016 - CF2
January 2017 - CF3
March 2017 - CF4
May 2017 - Beta1!

Please test!
(August 2017 - Beta2)

New Features
DBA and administration
Monitoring
Developer and SQL features
Backup and replication
Performance

First things first

The small things
Drop support for protocol 1.0

(No more clients < 6.3)
Drop support for floating point timestamps

The bigger things
Directory pg_xlog is now pg_wal
Directory pg_clog is now pg_xact

Even bigger...
pg_switch_xlog() is now pg_switch_wal()
pg_xlogfile_name() is now pg_walfile_name()
pg_current_xlog*() is now pg_current_wal*
pg_last_xlog*() is now pg_last_wal*
pg_xlog_location_diff() is now
pg_wal_location_diff()

One more...
pg_receivexlog is now pg_receivewal
pg_resetxlog is now pg_resetwal
pg_xlogdump is now pg_waldump

Last one!
pg_basebackup --xlog-method is now --wal-
method
pg_basebackup --xlogdir is now --waldir

OK, some good news
Logging about multixact wraparound protection less
chatty

Don't be scared...

New Features
DBA and administration
Monitoring
Developer and SQL features
Backup and replication
Performance

SCRAM authentication
Salted Challenge Response Authentication
Standardized way to do auth
More secure than md5!
Switch when your clients support it

libpq enhancements
Multiple hosts can be specified

host=pg1,pg2,pg3 user=bob password=topsecret

Writable host can be requested
host=pg1,pg2,pg3 target_session_attrs=read-write

.pgpass overridden in connection string
host=pg1 passfile=/some/where/mypgpass

New Features
DBA and administration
Monitoring
Developer and SQL features
Backup and replication
Performance

pg_stat_activity
walsender processes now visible

-[RECORD 2]----+---------------------------------
datid |
datname |
...
application_name | pg_receivewal
...
backend_start | 2017-03-19 16:09:59.842833+01
...
wait_event | WalSenderMain
state | active
...
backend_type | walsender

pg_stat_activity
Backgrund worker processes now visible!

 datid | pid | backend_type | application_name
-------+-------+---------------------+------------------------------
 12295 | 18301 | client backend | psql
 | 17295 | autovacuum launcher |
 | 17297 | background worker | logical replication launcher
 | 17293 | background writer |
 | 17292 | checkpointer |
 | 18615 | walsender | pg_receivewal
 | 17294 | walwriter |
(7 rows)

New wait events
Latches

Extensions
Client/socket
Timeout
...

I/O events
Reads
Writes
Individually identified

Monitoring roles
Avoid superuser!

pg_read_all_settings
pg_read_all_stats
pg_stat_scan_tables
pg_monitor

New Features
DBA and administration
Monitoring
Developer and SQL features
Backup and replication
Performance

regexp_match
regexp_match()

Like regexp_matches but not SRF
No subquery needed

IDENTITY columns
Same functionality as SERIAL

Minus the permissions gotcha!
SQL standard

CREATE TABLE itest (
 a int GENERATED BY DEFAULT AS IDENTITY,
 b int GENERATED ALWAYS AS IDENTITY
)

Data ingestion
file_fdw can now use program

CREATE FOREIGN TABLE
test(a int, b text)
SERVER csv
OPTIONS (program 'gunzip -c /tmp/data.csv.gz');

XMLTABLE
(almost) per SQL standard
Convert XML document to resultset
Mapping XPath etc
Much faster than individual queries

JSON(b) FTS
JSON-aware full text search
Working ts_headline()

postgres=# SELECT to_tsvector('{"foo": "bar", "baz": 3}');
 '3':4 'bar':2 'baz':3 'foo':1

postgres=# SELECT to_tsvector('{"foo": "bar", "baz": 3}'::jsonb);
 'bar':1

postgres=# SELECT ts_headline('{"foo": "bar", "baz": 3}', 'foo');
{"foo": "bar", "baz": 3}

postgres=# SELECT ts_headline('{"foo": "bar", "baz": 3}'::jsonb, 'foo
{"baz": 3, "foo": "bar"}

ICU collations
More choice for collations

Not just OS ones
Stable across versions

Except ICU major versions
But those are detected

ICU collations
SELECT * FROM t ORDER BY a COLLATE "sv-SE-x-icu";

valle
vera
walle
wera

ICU collations
SELECT * FROM t ORDER BY a COLLATE "sv-SE-u-co-standard-x-icu";

valle
walle
vera
wera

New Features
DBA and administration
Monitoring
Developer and SQL features
Backup and replication
Performance

New defaults
New postgresql.conf defaults:

wal_level = replica
max_wal_senders = 10
max_replication_slots = 10

New pg_hba.conf defaults
Replication connections by default

Replication slots
Support for temporary replication slots
Automatically dropped at end of session
Prevents fall-behind with less risk

pg_basebackup
WAL streaming supported in tar mode (-Ft)
Better excludes
New defaults

WAL streaming (-X stream) now default
Uses temporary replication slots by default

Quorum based sync replication
Support ANY and FIRST mode
Previously only FIRST

synchronous_standby_names=
 FIRST 2 (pg1, pg2, pg3, pg4)

synchronous_standby_names=
 ANY 2 (pg1, pg2, pg3, pg4)

Logical replication
Based on WAL
And logical decoding
Replicate individual tables

Or sets of tables

Logical replication
CREATE TABLE testtable (a int PRIMARY KEY, b text);

CREATE PUBLICATION testpub FOR TABLE testtable;

Logical replication
CREATE TABLE testtable (a int PRIMARY KEY, b text);

CREATE SUBSCRIPTION testsub
 CONNECTION 'host=/tmp port=5500 dbname=postgres user=mha'
 PUBLICATION testpub;

Limits
No schema replication
No sequence replication
Not suitable for fail-over

New Features
DBA and administration
Monitoring
Developer and SQL features
Backup and replication
Performance

Hash indexes
Now WAL logged

So actually useful
Many performance enhancements

Better caching
Supports page-level vacuum
...

Sometimes better than btree

Partitioning
Based on existing inheritance

Same as old "manual partitioning"
Easier to work with

Automatic tuple routing
More limitations -> more optimizations

Many not there yet

Partitioning
Range partitioning

(Single column only)
List partitioning

Partitioning
CREATE TABLE testlog (t timestamptz DEFAULT now(), txt text)
PARTITION BY RANGE(t);

CREATE TABLE testlog_2017
 PARTITION OF testlog (t)
 FOR VALUES FROM ('2017-01-01') TO ('2018-01-01');

INSERT INTO testlog (txt) VALUES ('test');

Partitioning
CREATE TABLE testcat (category text, txt text)
PARTITION BY LIST(category);

CREATE TABLE testcat_cat13
 PARTITION OF testcat (category)
 FOR VALUES IN ('cat1', 'cat2', 'cat3');

INSERT INTO testcat VALUES ('cat1', 'Test1');

Partitioning
Still many limitations

No row-movement
No cross-partition indexes
No cross-partition keys
No partition-wise processing
No tuple routing for foreign partitions

More parallelism
9.6 introduced parallelism

Sequential scans
Aggregates
Hash and loop joins

Usability
New parameter max_parallel_workers
query string now in workers

Shows in pg_stat_activity
pid | 28040
...
wait_event_type | Timeout
wait_event | PgSleep
state | active
query | select x, pg_sleep(2000) from tt;
backend_type | background worker

Index scans
Regular index scans (btree)
Index Only scans (btree)
Bitmap Heap Scan

Index still scanned serially

Joins
Merge joins

Multi column statistics
Collect statistics across columns

Previously each column individually
Combinations must be explicitly selected

CREATE STATISTICS test_stats ON b,c FROM test

Collects dependency and n_distinct

That's a lot!

There's always more
Lots of smaller fixes
Performance improvements
etc, etc
Can't mention them all!

Please help!

Please help!
Download and test!

apt packages available
rpm/yum packages available
Both beta and dev snapshots!

Thank you!
Magnus Hagander

magnus@hagander.net
@magnushagander

http://www.hagander.net/talks/

This material is licensed

