
  

PostgreSQL 9.1 -
what's new

PGConf.EU 2011

Amsterdam, The Netherlands

Magnus Hagander
magnus@hagander.net

@magnushagander

PRODUCTS • CONSULTING • APPLICATION MANAGEMENT • IT OPERATIONS • SUPPORT • TRAINING



  

PostgreSQL 9.1
● Released September 12th

● Yes, that means production ready
● This is what you should be using!

● At least if you're building new



  

Many new features
● Replication and Backup
● Security
● Performance
● SQL and application functionality



  

Most probable app-breaker
● standard_conforming_strings is now on 

by default
● This means:
postgres=# select 'O\'Brien';
postgres'# 

● Make sure you use:
postgres=# SELECT 'O''Brien', E'O\'Brien';
 O'Brien  | O'Brien



  

Replication and backup
● Biggest features in 9.0 were (arguably):

● Streaming Replication
● Hot Standby

● Many rough edges
● Management and monitoring functionality 

based on real world experience



  

Replication and backup
● Replication is now a separate permission
● Superuser not required/recommended

postgres=# CREATE USER replica WITH REPLICATION;
CREATE ROLE

● Superusers granted replication permission 
by default
● Can be revoked



  

Replication monitoring
● View all replication sessions from master

postgres=# SELECT * FROM pg_stat_replication;
…. | 2011-02-07 12:52:20.141376+01 | STREAMING | 0/13000B70

● View transaction replay timestamp on 
slave
postgres=# SELECT pg_last_xact_replay_timestamp();
 2011-02-07 12:47:36.608706+01



  

Hot Standby conflict mgmt
● Query conflicts are the big issue with HS

● Optional feedback loop added
● Monitors for query conflicts

postgres=# select datname, conflicts FROM pg_stat_database;

 postgres  |         79

postgres=# SELECT * FROM pg_stat_database_conflicts;
datname          | postgres

confl_tablespace | 1

confl_lock       | 3

confl_snapshot   | 74

confl_bufferpin  | 1

confl_deadlock   | 0



  

Streaming base backup
● Used for backups

● No need to set archive_command in 
small deployments

● No need for complicated scripts
● No need for SSH/rsync/whatever access
● Write to directory or native tarfiles
● Just:

pg_basebackup -D /some/where -x



  

Streaming base backup
● Used for deploying replicas:

● No need to use backups/log archiving
● Single command deployment of slave
● Just create recovery.conf

● Runs over libpq protocol
● Supports all authenticaiton and encryption 

options
● Requires REPLICATION privilege and 

walsender



  

Detailed recovery control
● Ability to pause during recovery
● With hot standby, data can be reviewed
● Addition of “named restore points” during 

normal operation

SELECT pg_create_restore_point('before_stupid')



  

Synchronous replication
● Current solutions are asynchronous
● Sync often wanted for data security
● “Semi-sync” for decent performance
● Controllable per transaction
● Mix of sync and async fully supported



  

Many new features
● Replication and Backup
● Security
● Performance
● SQL and application functionality



  

Server auth on unix sockets
● Previously, peer could only be verified 

from server to client
● Now we can specify

dbname=foo requirepeer=postgres

● Avoids local attacks
● For TCP, use SSL certificate validation



  

SE-PGSQL
● Integrates with SE-Linux
● Label based security
● Umm. Yeah, go try it.



  

Many new features
● Replication and Backup
● Security
● Performance
● SQL and application functionality



  

More monitoring points
● pg_stat_*_tables added counters

● Number of vacuum
● Number of analyze
● Differentiated by regular and 

background processes
● Helps tuning autovacuum



  

More monitoring points
● pg_stat_bgwriter counts fsync requests

● Detect when background processes 
aren't keeping up

● fsync() by backends is very bad



  

Unlogged tables
● Create tables without writing to WAL

● Considerable performance increase for 
large loading or changes

● Truncate on crash recovery
● Not included in log based replication
● No way (yet) to convert between logged 

and unlogged



  

KNN-GiST
● “ORDER BY for GiST”
● Fast, indexed, “K-Next-Neighbour” search
● Full awesomeness requires PostGIS 2.0
● For example, “the 10 graphical objects 

closest to this point”

SELECT * FROM t
ORDER BY pos <-> myposition
LIMIT 10



  

Many new features
● Replication and Backup
● Security
● Performance
● SQL and application functionality



  

SQL/MED
● “Managed External Data”
● Core parts completed and included!
● Table-like access to external data

● Other PostgreSQL servers (“dblink”)
● CSV files (without COPY)
● Any other data sources (“Foreign Data 

Wrappers”)



  

Serializable Snapshot Isolation

● True SERALIZABLE transactions
● Low overhead
● Old behavior still there as REPEATABLE 
READ

● Not supported on Hot Standby slaves



  

PK functional dependencies
● Functional dependencies on PRIMARY 

KEYs are recognized for GROUP BY
● No more

postgres=# SELECT uid,first,last FROM users GROUP BY uid;

ERROR:  column "users.first" must appear in the GROUP BY 
clause or be used in an aggregate function at character 12

● Only recognizes PRIMARY KEY, not 
UNIQUE constraints or indexes



  

Per column collation
● Before 8.4, collation was per cluster
● Since 8.4, it's per database
● Now moving to per column
● One column English, another Danish
● Controls sort order and upper/lower

CREATE TABLE  t (
  a text,
  b text COLLATE ”sv_SE”
)



  

Triggers on VIEWs
● INSTEAD OF triggers only
● Can be used to implement UPDATEable 

views
● Much nicer to work with than RULEs
● Gets the whole modified view row, figures 

out the rest



  

Writable CTEs!
● Nicer way to write “subqueries” for DML

WITH del_post AS (
  DELETE FROM posts
    WHERE created<now()-'6 months' RETURNING *
)
SELECT user_id, count(*) FROM del_post
GROUP BY user_id

● “Anything” supported, joins etc
● Can even be made recursive!



  

Writable CTEs!
● Nicer way to write “subqueries” for DML

WITH del_post AS (
  DELETE FROM posts
    WHERE created<now()-'6 months' RETURNING *
),
per_user AS (
  SELECT user_id, count(*) FROM del_post
  GROUP BY user_id
)
UPDATE counts c
SET post_count=post_count-per_user.count
FROM per_user WHERE per_user.user_id=c.user_id



  

Extensions
● Wrap extensions (contrib, postgis etc)
● Distinct objects containing schema items
● Controlled dump/reload/upgrade

CREATE EXTENSION pgcrypto;

ALTER EXTENSION pgcrypto
UPGRADE TO <newversion>;



  

Thank you!

Questions?

http://2011.pgconf.eu/feedback/

Twitter: @magnushagander
http://blog.hagander.net/
magnus@hagander.net


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

