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PostgreSQL 9.1
● Released September 12th

● Yes, that means production ready
● This is what you should be using!

● At least if you're building new



  

Many new features
● Replication and Backup
● Security
● Performance
● SQL and application functionality



  

Most probable app-breaker
● standard_conforming_strings is now on 

by default
● This means:
postgres=# select 'O\'Brien';
postgres'# 

● Make sure you use:
postgres=# SELECT 'O''Brien', E'O\'Brien';
 O'Brien  | O'Brien



  

Replication and backup
● Biggest features in 9.0 were (arguably):

● Streaming Replication
● Hot Standby

● Many rough edges
● Management and monitoring functionality 

based on real world experience



  

Replication and backup
● Replication is now a separate permission
● Superuser not required/recommended

postgres=# CREATE USER replica WITH REPLICATION;
CREATE ROLE

● Superusers granted replication permission 
by default
● Can be revoked



  

Replication monitoring
● View all replication sessions from master

postgres=# SELECT * FROM pg_stat_replication;
…. | 2011-02-07 12:52:20.141376+01 | STREAMING | 0/13000B70

● View transaction replay timestamp on 
slave
postgres=# SELECT pg_last_xact_replay_timestamp();
 2011-02-07 12:47:36.608706+01



  

Hot Standby conflict mgmt
● Query conflicts are the big issue with HS

● Optional feedback loop added
● Monitors for query conflicts

postgres=# select datname, conflicts FROM pg_stat_database;

 postgres  |         79

postgres=# SELECT * FROM pg_stat_database_conflicts;
datname          | postgres

confl_tablespace | 1

confl_lock       | 3

confl_snapshot   | 74

confl_bufferpin  | 1

confl_deadlock   | 0



  

Streaming base backup
● Used for backups

● No need to set archive_command in 
small deployments

● No need for complicated scripts
● No need for SSH/rsync/whatever access
● Write to directory or native tarfiles
● Just:

pg_basebackup -D /some/where -x



  

Streaming base backup
● Used for deploying replicas:

● No need to use backups/log archiving
● Single command deployment of slave
● Just create recovery.conf

● Runs over libpq protocol
● Supports all authenticaiton and encryption 

options
● Requires REPLICATION privilege and 

walsender



  

Detailed recovery control
● Ability to pause during recovery
● With hot standby, data can be reviewed
● Addition of “named restore points” during 

normal operation

SELECT pg_create_restore_point('before_stupid')



  

Synchronous replication
● Current solutions are asynchronous
● Sync often wanted for data security
● “Semi-sync” for decent performance
● Controllable per transaction
● Mix of sync and async fully supported



  

Many new features
● Replication and Backup
● Security
● Performance
● SQL and application functionality



  

Server auth on unix sockets
● Previously, peer could only be verified 

from server to client
● Now we can specify

dbname=foo requirepeer=postgres

● Avoids local attacks
● For TCP, use SSL certificate validation



  

SE-PGSQL
● Integrates with SE-Linux
● Label based security
● Umm. Yeah, go try it.



  

Many new features
● Replication and Backup
● Security
● Performance
● SQL and application functionality



  

More monitoring points
● pg_stat_*_tables added counters

● Number of vacuum
● Number of analyze
● Differentiated by regular and 

background processes
● Helps tuning autovacuum



  

More monitoring points
● pg_stat_bgwriter counts fsync requests

● Detect when background processes 
aren't keeping up

● fsync() by backends is very bad



  

Unlogged tables
● Create tables without writing to WAL

● Considerable performance increase for 
large loading or changes

● Truncate on crash recovery
● Not included in log based replication
● No way (yet) to convert between logged 

and unlogged



  

KNN-GiST
● “ORDER BY for GiST”
● Fast, indexed, “K-Next-Neighbour” search
● Full awesomeness requires PostGIS 2.0
● For example, “the 10 graphical objects 

closest to this point”

SELECT * FROM t
ORDER BY pos <-> myposition
LIMIT 10



  

Many new features
● Replication and Backup
● Security
● Performance
● SQL and application functionality



  

SQL/MED
● “Managed External Data”
● Core parts completed and included!
● Table-like access to external data

● Other PostgreSQL servers (“dblink”)
● CSV files (without COPY)
● Any other data sources (“Foreign Data 

Wrappers”)



  

Serializable Snapshot Isolation

● True SERALIZABLE transactions
● Low overhead
● Old behavior still there as REPEATABLE 
READ

● Not supported on Hot Standby slaves



  

PK functional dependencies
● Functional dependencies on PRIMARY 

KEYs are recognized for GROUP BY
● No more

postgres=# SELECT uid,first,last FROM users GROUP BY uid;

ERROR:  column "users.first" must appear in the GROUP BY 
clause or be used in an aggregate function at character 12

● Only recognizes PRIMARY KEY, not 
UNIQUE constraints or indexes



  

Per column collation
● Before 8.4, collation was per cluster
● Since 8.4, it's per database
● Now moving to per column
● One column English, another Danish
● Controls sort order and upper/lower

CREATE TABLE  t (
  a text,
  b text COLLATE ”sv_SE”
)



  

Triggers on VIEWs
● INSTEAD OF triggers only
● Can be used to implement UPDATEable 

views
● Much nicer to work with than RULEs
● Gets the whole modified view row, figures 

out the rest



  

Writable CTEs!
● Nicer way to write “subqueries” for DML

WITH del_post AS (
  DELETE FROM posts
    WHERE created<now()-'6 months' RETURNING *
)
SELECT user_id, count(*) FROM del_post
GROUP BY user_id

● “Anything” supported, joins etc
● Can even be made recursive!



  

Writable CTEs!
● Nicer way to write “subqueries” for DML

WITH del_post AS (
  DELETE FROM posts
    WHERE created<now()-'6 months' RETURNING *
),
per_user AS (
  SELECT user_id, count(*) FROM del_post
  GROUP BY user_id
)
UPDATE counts c
SET post_count=post_count-per_user.count
FROM per_user WHERE per_user.user_id=c.user_id



  

Extensions
● Wrap extensions (contrib, postgis etc)
● Distinct objects containing schema items
● Controlled dump/reload/upgrade

CREATE EXTENSION pgcrypto;

ALTER EXTENSION pgcrypto
UPGRADE TO <newversion>;



  

Thank you!

Questions?

http://2011.pgconf.eu/feedback/

Twitter: @magnushagander
http://blog.hagander.net/
magnus@hagander.net
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