

Beyond UNIQUE
Exclusion Constraints in PostgreSQL 9.0

FOSDEM 2010
Brussels, Belgium

https://www.postgresql.eu/events/feedback/

Magnus Hagander
Redpill Linpro AB

Consulting ● Development ● IT Operations ● Training ● Support ● Products

First things first

Exclusion Constraints

!=

constraint_exclusion

What are constraints
● Declarative
● Part of the data model
● Always checked
● CHECK, NOT NULL, UNIQUE,

FOREIGN KEY

UNIQUE constraints
● Two rows can conflict with each

other
– No other contraints has this property

● Implemented only on btree
indexes

● Simple predicate lock

When unique is not enough
● Unique geographical regions

– PostGIS
– Means «non-overlapping»

● Non-overlapping time ranges
– Booking of a room
– Scheduling an event

Trivial example
● «Booking a conference room»
● Multiple rooms
● Multiple people booking it
● Dealing with overlaps

Enforce non-overlapping today
● Suggestions?

Enforce non-overlapping today
● Serialize – table level lock

– And manually search before each insert
– Will never scale

● Check using trigger
– Concurrency issues
– Performance issues
– Not reusable
– Very easy to get wrong

Enforce non-overlapping today
● Delayed check

– Accept all bookings
– Reject later, «hope it doesn't happen

often»

● Solve outside the database
– No real need for a constraint

Enforce non-overlapping today
● Conflicts will appear eventually

– Application level checks not 100%

● Conflicts will get resolved
eventually

– Unfortunately, too late
– Who hasn't had a double-booked room?
– The later you reject, the more costly

How about an actual solution?
● Exclusion Constraints
● New in PostgreSQL 9.0
● General constraint mechanism

– Many different operators
– Based on GiST

Short side-track
● The PERIOD datatype

– Not in 9.0 – pgFoundry
– Makes dealing with time intervals much

nicer
– Not a requirement, but easier

● Single datatype for start and end
time

Short side-track
CREATE TABLE bookings(title text, room text,

during period)

INSERT INTO bookings values ('Constraint talk',
'AW1.121',
period('2010-02-06 16:15', '2010-02-06 17:00'))

INSERT INTO bookings values ('Zoo talk',
'AW1.121',
period('2010-02-06 17:15', '2010-02-06 18:00'))

INSERT INTO bookings values ('Features talk',
'AW1.121',
period('2010-02-06 17:30', '2010-02-06 18:15'))

Short side-track
SELECT b1.title, b2.title
FROM bookings b1, bookings b2
WHERE
overlaps(b1.during, b2.during)
AND b1.title<b2.title;

 title | title
---------------+----------
 Features talk | Zoo talk
(1 row)

Back to constraints
● We inserted a conflict
● But the system knew it was there

– Create a trigger!
– Using the overlaps function

● overlaps() function is also &&
operator

– P1 && P2 same as overlaps(P1, P2)

Exclusion constraints
● Let's redefine our table
CREATE TABLE bookings(

title text,
room text,
during period,
EXCLUDE USING gist

(room WITH =,
 during WITH &&)

)

NOTICE: CREATE TABLE / EXCLUDE will create
implicit index "bookings_room_during_exclusion"
for table "bookings"

Constraint violations

INSERT INTO bookings values ('Features
talk', 'AW1.121', period('2010-02-06
17:30', '2010-02-06 18:15'));

ERROR: conflicting key value violates exclusion
constraint "bookings_room_during_exclusion"
DETAIL: Key (room, during)=(AW1.121, [2010-02-06
17:30:00+01, 2010-02-06 18:15:00+01)) conflicts
with existing key (room, during)=(AW1.121, [2010-
02-06 17:15:00+01, 2010-02-06 18:00:00+01)).

Syntax details
CREATE TABLE bookings(

title text,
room text,
during period,
EXCLUDE USING gist

(room WITH =,
 during WITH &&)

)

● Currently, only GiST is supported

Syntax details
CREATE TABLE bookings(

title text,
room text,
during period,
EXCLUDE USING gist

(room WITH =,
 during WITH &&)

)

● Columns or expressions supported

Syntax details
CREATE TABLE bookings(

title text,
room text,
during period,
EXCLUDE USING gist

(room WITH =,
 during WITH &&)

)

● Exclusion operator. Must support GiST.

Operator
● Operator is used to find conflicts
● Must return TRUE when two values

conflict
● Must return TRUE when two values

conflict
● Thus, «overlaps» makes sure there are

no tuples that overlap

Multi-column constraints
● Multi-column constraints are

always ANDed
● As long as one of the columns is

not in conflict, tuple is allowed
● To do OR, create multiple

constraints

Multiple constraints
CREATE TABLE bookings(

title text,
room text,
during period,
EXCLUDE USING gist

(room WITH =),
EXCLUDE USING gist

(during WITH &&)
)

Multiple constraints
CREATE TABLE bookings(

title text,
room text,
teacher text,
during period,
EXCLUDE USING gist

(room WITH =, during WITH &&),
EXCLUDE USING gist

(teacher WITH =, during WITH &&)
)

Redefining UNIQUE
CREATE TABLE bookings(

title text, room text,
during period,
EXCLUDE USING gist

(room WITH =),
)

CREATE TABLE bookings(
title text, room text UNIQUE,
during period

)

● Worse performance, but more datatypes

Partial constraints
● Work just like partial indexes
CREATE TABLE bookings(

title text,
room text,
during period,
EXCLUDE USING gist

(room WITH =, during WITH &&)
WHERE (during >>

period('2010-01-01'::timestamptz))
)

Thank You!
Please leave feedback:

https://www.postgresql.eu/events/feedback/

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

