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First things first

Exclusion Constraints

!=

constraint_exclusion



  

What are constraints
● Declarative
● Part of the data model
● Always checked
● CHECK, NOT NULL, UNIQUE, 

FOREIGN KEY



  

UNIQUE constraints
● Two rows can conflict with each 

other
– No other contraints has this property

● Implemented only on btree 
indexes

● Simple predicate lock



  

When unique is not enough
● Unique geographical regions

– PostGIS
– Means «non-overlapping»

● Non-overlapping time ranges
– Booking of a room
– Scheduling an event



  

Trivial example
● «Booking a conference room»
● Multiple rooms
● Multiple people booking it
● Dealing with overlaps



  

Enforce non-overlapping today
● Suggestions?



  

Enforce non-overlapping today
● Serialize – table level lock

– And manually search before each insert
– Will never scale

● Check using trigger
– Concurrency issues
– Performance issues
– Not reusable
– Very easy to get wrong



  

Enforce non-overlapping today
● Delayed check

– Accept all bookings
– Reject later, «hope it doesn't happen 

often»

● Solve outside the database
– No real need for a constraint



  

Enforce non-overlapping today
● Conflicts will appear eventually

– Application level checks not 100%

● Conflicts will get resolved 
eventually

– Unfortunately, too late
– Who hasn't had a double-booked room?
– The later you reject, the more costly



  

How about an actual solution?
● Exclusion Constraints
● New in PostgreSQL 9.0
● General constraint mechanism

– Many different operators
– Based on GiST



  

Short side-track
● The PERIOD datatype

– Not in 9.0 – pgFoundry
– Makes dealing with time intervals much 

nicer
– Not a requirement, but easier

● Single datatype for start and end 
time



  

Short side-track
CREATE TABLE bookings(title text, room text,

during period)

INSERT INTO bookings values ('Constraint talk',
'AW1.121',
period('2010-02-06 16:15', '2010-02-06 17:00'))

INSERT INTO bookings values ('Zoo talk',
'AW1.121',
period('2010-02-06 17:15', '2010-02-06 18:00'))

INSERT INTO bookings values ('Features talk',
'AW1.121',
period('2010-02-06 17:30', '2010-02-06 18:15'))



  

Short side-track
SELECT b1.title, b2.title
FROM bookings b1, bookings b2
WHERE
overlaps(b1.during, b2.during)
AND b1.title<b2.title;

     title     |  title   
---------------+----------
 Features talk | Zoo talk
(1 row)



  

Back to constraints
● We inserted a conflict
● But the system knew it was there

– Create a trigger!
– Using the overlaps function

● overlaps() function is also && 
operator

– P1 && P2 same as overlaps(P1, P2)



  

Exclusion constraints
● Let's redefine our table
CREATE TABLE bookings(

title text,
room text,
during period,
EXCLUDE USING gist 

(room WITH =,
 during WITH &&)

)

NOTICE:  CREATE TABLE / EXCLUDE will create 
implicit index "bookings_room_during_exclusion" 
for table "bookings"



  

Constraint violations

INSERT INTO bookings values ('Features 
talk', 'AW1.121', period('2010-02-06 
17:30', '2010-02-06 18:15'));

ERROR:  conflicting key value violates exclusion 
constraint "bookings_room_during_exclusion"
DETAIL:  Key (room, during)=(AW1.121, [2010-02-06 
17:30:00+01, 2010-02-06 18:15:00+01)) conflicts 
with existing key (room, during)=(AW1.121, [2010-
02-06 17:15:00+01, 2010-02-06 18:00:00+01)).



  

Syntax details
CREATE TABLE bookings(

title text,
room text,
during period,
EXCLUDE USING gist 

(room WITH =,
 during WITH &&)

)

● Currently, only GiST is supported



  

Syntax details
CREATE TABLE bookings(

title text,
room text,
during period,
EXCLUDE USING gist 

(room WITH =,
 during WITH &&)

)

● Columns or expressions supported



  

Syntax details
CREATE TABLE bookings(

title text,
room text,
during period,
EXCLUDE USING gist 

(room WITH =,
 during WITH &&)

)

● Exclusion operator. Must support GiST.



  

Operator
● Operator is used to find conflicts
● Must return TRUE when two values 

conflict
● Must return TRUE when two values 

conflict
● Thus, «overlaps» makes sure there are 

no tuples that overlap



  

Multi-column constraints
● Multi-column constraints are 

always ANDed
● As long as one of the columns is 

not in conflict, tuple is allowed
● To do OR, create multiple 

constraints



  

Multiple constraints
CREATE TABLE bookings(

title text,
room text,
during period,
EXCLUDE USING gist 

(room WITH =),
EXCLUDE USING gist

(during WITH &&)
)



  

Multiple constraints
CREATE TABLE bookings(

title text,
room text,
teacher text,
during period,
EXCLUDE USING gist 

(room WITH =, during WITH &&),
EXCLUDE USING gist

(teacher WITH =, during WITH &&)
)



  

Redefining UNIQUE
CREATE TABLE bookings(

title text, room text,
during period,
EXCLUDE USING gist 

(room WITH =),
)

CREATE TABLE bookings(
title text, room text UNIQUE,
during period

)

● Worse performance, but more datatypes



  

Partial constraints
● Work just like partial indexes
CREATE TABLE bookings(

title text,
room text,
during period,
EXCLUDE USING gist 

(room WITH =, during WITH &&)
WHERE (during >>

period('2010-01-01'::timestamptz))
)



  

Thank You!
Please leave feedback:

https://www.postgresql.eu/events/feedback/

Questions?
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