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Replication!
● But I have replication!
● To multiple nodes!
● It's even in the cloud!



  

What about clustering?
● Yeah, pretty much the same



  

But my SAN is 100% up!
● Really?



  

But my SAN is 100% up!
● Really?
● No, really?!



  

Backup planning
● Backup interval
● Backup retention
● Performance impacts



  

Restore planning
● Time spent taking backups usually not 

important
● Time it takes to restore is critical
● Consider multi-stage solutions



  

PostgreSQL options
● Logical backups

● pg_dump
● Physical backups

● Filesystem snapshots
● pg_basebackup
● “Manual” base backups



  

Logical backups
● SQL script dump of schema + data
● Restored through SQL commands
● Great flexibility
● Not the greatest for performance



  

pg_dump
● This is your main tool

● Dumps a single database
● Regular PostgreSQL connection
● Guarantees consistent snapshot across 

database
● Single threaded

● (for now..)



  

pg_dump
● Supports multiple output formats

● Always use “custom” format (-Fc)
● Compressed by default

● Supports dumping separate objects
● For backups, always dump whole 

database



  

pg_dump system impact
● Runs regular COPY queries
● Uses single backend
● Does not ruin PostgreSQL cache

● “ring buffer” strategy used
● Can potentially ruin filesystem cache
● Writing of dump file causes I/O



  

pg_dump compression
● Compression happens in pg_dump
● Can be used for throttling

● Typical “breakpoint” at 3-5
● Higher becomes CPU bound
● Lower becomes I/O bound



  

pg_dump ssh tunnel
● ssh dbserver "pg_dump -Z9 -Fc -U 
postgres mydb" > mydb.dump

● ssh -o "Compression=no"  
magh.u.bitbit.net "pg_dump -Z9 -Fc 
-U postgres mydb" > mydb.dump



  

Restoring from pg_dump
● Use pg_restore

● Reads “custom” format dumps
● Regular connection

● Full database restore
● “Recover from backups”

● Partial database restore
● “Create staging env”
● “Single table restore”



  

Restore performance
● Regular COPY

● Followed by CREATE INDEX
● And ADD CONSTRAINT

● Very slow for large databases!



  

Restore performance
● Use -1 flag
● Full restore as single transaction
● Enables multiple optimizations

● Particularly if WAL archiving not 
enabled

● Empty database in case of crash



  

Restore performance
● Restore in parallel sessions

● -j <n>
● Each object still in one session
● Not compatible with -1

● Need to pick one
● -j usually faster



  

Restore performance
● Turn fsync=off

● Last resort
● But quite useful

● Don't forget to turn it back on!
● (Yes, it happens)

● Don't forget to flush OS caches!
● (Yes, you'll get corruption)



  

Physical backups



  

Physical backups
● PostgreSQL stores database in files
● We can backup those files...
● No need to parse or query

● Thus faster!
● Architecture, version, compile flags and 

paths must be identical
● Only full cluster backups



  

Offline backups
● Easiest possible way

● Stop PostgreSQL, take backup, start 
PostgreSQL

● Backup files any way possible
● Tar, copy, filesystem snapshot etc

● Not to be ignored...



  

Simple snapshot backups
● Filesystem/SAN snapshots while database 

is running
● Requires atomic snapshot across all 

tablespaces
● Including pg_xlog

● Mainly useful in small installations



  

Online base backups
● Non-constrained filesystem level backups
● Recoverable in combination with 

transaction log
● With or without log archive
● Provides base for PITR



  

Online base backups
● Integrated base backups

● On top of replication protocol
● Enable replication!

● wal_level=archive
● max_wal_senders=2



  

Online full backups
● pg_basebackup
  -U postgres
  -D backup
  -P
  -x

● Requires “enough” WAL to stay 
around

● Generates complete data directory



  

Log archiving
● As log is generated, send to archive
● On restoring, fetch back from archive

● Start from base backup
● “Roll forward” through archived log
● Stop at any point



  

Log archiving in PostgreSQL
● archive_mode=on

● Starts the log archiver
● archive_command=<something>

● “take file x and store it under the name 
y”

● restore_command=<something>
● “give me back the file you stored under 

name y”



  

Log archiving limitations
● Always 16Mb segments

● archive_timeout=<n>
● Too much or not enough
● Replication solves problem in 9.1
● 9.2: pg_receivexlog



  

Base backups for PITR
● pg_basebackup without -x
● Manual method:

● SELECT pg_start_backup();
● <copy files>

– Copy files, e.g. cp/tar
– Rsync
– SAN snapshots

● SELECT pg_stop_backup();



  

pg_basebackup system 
impact

● Reads all data, generates lots of I/O
● pg_basebackup single threaded

● This is probably a good thing
● Sequential reads
● (Optional) compression happens in 

pg_basebackup, not server



  

Restore performance
● Depends on “distance to base backup”
● Read back all log files, replays

● Generates random writes
● Single threaded as well

● Multiple generations of base backups



  

Backup strategies



  

Please make backups



  

How to back up
● You definitely want online physical 

backups
● You almost certainly want PITR
● You probably want pg_dump

● If you can afford it



  

Backup retention
● Comes back to  business requirements
● How far back does it make sense to 

restore data?
● And at what resolutions?



  

Log file/base backup
● Restore requires base backup + all log 

files since with no “holes”
● Keep fewer base backups but all logs
● Keep fewer logs but more base backups



  

Backup vs replication
● You probably want both
● Backups are more important
● Replication good for hardware failure
● And allows for much shorter service 

interruption



  

Lagged behind replicas
● Using file based replication
● Introduce delay in the system

● E.g. 1 hour or 12 hours
● Roll forward replica instead of restoring 

from backups



  

Testing your backups



  

Testing your backups
● We all know we should
● And we seldom do



  

Use for staging and dev
● Restore from backup instead of deploy 

from master
● Do not automate!



  

Thank you!

Questions?
Share your stories!

Twitter: @magnushagander
http://blog.hagander.net/
magnus@hagander.net



  

PostgreSQL Conference Europe 2012
October 23-26

See you in Prague!
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