

PostgreSQL
Backup Strategies

Austin PGDay 2012
Austin, TX

Magnus Hagander
magnus@hagander.net

PRODUCTS • CONSULTING • APPLICATION MANAGEMENT • IT OPERATIONS • SUPPORT • TRAINING

Replication!
● But I have replication!
● To multiple nodes!
● It's even in the cloud!

What about clustering?
● Yeah, pretty much the same

But my SAN is 100% up!
● Really?

But my SAN is 100% up!
● Really?
● No, really?!

Backup planning
● Backup interval
● Backup retention
● Performance impacts

Restore planning
● Time spent taking backups usually not

important
● Time it takes to restore is critical
● Consider multi-stage solutions

PostgreSQL options
● Logical backups

● pg_dump
● Physical backups

● Filesystem snapshots
● pg_basebackup
● “Manual” base backups

Logical backups
● SQL script dump of schema + data
● Restored through SQL commands
● Great flexibility
● Not the greatest for performance

pg_dump
● This is your main tool

● Dumps a single database
● Regular PostgreSQL connection
● Guarantees consistent snapshot across

database
● Single threaded

● (for now..)

pg_dump
● Supports multiple output formats

● Always use “custom” format (-Fc)
● Compressed by default

● Supports dumping separate objects
● For backups, always dump whole

database

pg_dump system impact
● Runs regular COPY queries
● Uses single backend
● Does not ruin PostgreSQL cache

● “ring buffer” strategy used
● Can potentially ruin filesystem cache
● Writing of dump file causes I/O

pg_dump compression
● Compression happens in pg_dump
● Can be used for throttling

● Typical “breakpoint” at 3-5
● Higher becomes CPU bound
● Lower becomes I/O bound

pg_dump ssh tunnel
● ssh dbserver "pg_dump -Z9 -Fc -U
postgres mydb" > mydb.dump

● ssh -o "Compression=no"
magh.u.bitbit.net "pg_dump -Z9 -Fc
-U postgres mydb" > mydb.dump

Restoring from pg_dump
● Use pg_restore

● Reads “custom” format dumps
● Regular connection

● Full database restore
● “Recover from backups”

● Partial database restore
● “Create staging env”
● “Single table restore”

Restore performance
● Regular COPY

● Followed by CREATE INDEX
● And ADD CONSTRAINT

● Very slow for large databases!

Restore performance
● Use -1 flag
● Full restore as single transaction
● Enables multiple optimizations

● Particularly if WAL archiving not
enabled

● Empty database in case of crash

Restore performance
● Restore in parallel sessions

● -j <n>
● Each object still in one session
● Not compatible with -1

● Need to pick one
● -j usually faster

Restore performance
● Turn fsync=off

● Last resort
● But quite useful

● Don't forget to turn it back on!
● (Yes, it happens)

● Don't forget to flush OS caches!
● (Yes, you'll get corruption)

Physical backups

Physical backups
● PostgreSQL stores database in files
● We can backup those files...
● No need to parse or query

● Thus faster!
● Architecture, version, compile flags and

paths must be identical
● Only full cluster backups

Offline backups
● Easiest possible way

● Stop PostgreSQL, take backup, start
PostgreSQL

● Backup files any way possible
● Tar, copy, filesystem snapshot etc

● Not to be ignored...

Simple snapshot backups
● Filesystem/SAN snapshots while database

is running
● Requires atomic snapshot across all

tablespaces
● Including pg_xlog

● Mainly useful in small installations

Online base backups
● Non-constrained filesystem level backups
● Recoverable in combination with

transaction log
● With or without log archive
● Provides base for PITR

Online base backups
● Integrated base backups

● On top of replication protocol
● Enable replication!

● wal_level=archive
● max_wal_senders=2

Online full backups
● pg_basebackup
 -U postgres
 -D backup
 -P
 -x

● Requires “enough” WAL to stay
around

● Generates complete data directory

Log archiving
● As log is generated, send to archive
● On restoring, fetch back from archive

● Start from base backup
● “Roll forward” through archived log
● Stop at any point

Log archiving in PostgreSQL
● archive_mode=on

● Starts the log archiver
● archive_command=<something>

● “take file x and store it under the name
y”

● restore_command=<something>
● “give me back the file you stored under

name y”

Log archiving limitations
● Always 16Mb segments

● archive_timeout=<n>
● Too much or not enough
● Replication solves problem in 9.1
● 9.2: pg_receivexlog

Base backups for PITR
● pg_basebackup without -x
● Manual method:

● SELECT pg_start_backup();
● <copy files>

– Copy files, e.g. cp/tar
– Rsync
– SAN snapshots

● SELECT pg_stop_backup();

pg_basebackup system
impact

● Reads all data, generates lots of I/O
● pg_basebackup single threaded

● This is probably a good thing
● Sequential reads
● (Optional) compression happens in

pg_basebackup, not server

Restore performance
● Depends on “distance to base backup”
● Read back all log files, replays

● Generates random writes
● Single threaded as well

● Multiple generations of base backups

Backup strategies

Please make backups

How to back up
● You definitely want online physical

backups
● You almost certainly want PITR
● You probably want pg_dump

● If you can afford it

Backup retention
● Comes back to business requirements
● How far back does it make sense to

restore data?
● And at what resolutions?

Log file/base backup
● Restore requires base backup + all log

files since with no “holes”
● Keep fewer base backups but all logs
● Keep fewer logs but more base backups

Backup vs replication
● You probably want both
● Backups are more important
● Replication good for hardware failure
● And allows for much shorter service

interruption

Lagged behind replicas
● Using file based replication
● Introduce delay in the system

● E.g. 1 hour or 12 hours
● Roll forward replica instead of restoring

from backups

Testing your backups

Testing your backups
● We all know we should
● And we seldom do

Use for staging and dev
● Restore from backup instead of deploy

from master
● Do not automate!

Thank you!

Questions?
Share your stories!

Twitter: @magnushagander
http://blog.hagander.net/
magnus@hagander.net

PostgreSQL Conference Europe 2012
October 23-26

See you in Prague!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

